Navigation Links
Scientists take a step towards developing better vaccines for bluetongue
Date:8/1/2011

Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have taken a step towards producing better vaccines against Bluetongue an important disease of livestock - after successfully assembling the virus outside a cell. This research, published today (1 August 2011) in the journal Proceedings of the National Academy of Sciences, could provide scientists with the tools to develop vaccines with useful new properties.

Professor Polly Roy of London School of Hygiene and Tropical Medicine, who led the team, explains "We've developed the tools and provided the instruction manual for developing new, more effective Bluetongue vaccines. This will not only be useful for combating Bluetongue but will provide insights into fundamental virus assembly that will be useful for producing vaccines for other viruses."

Better vaccines will be important to help combat the threat that Bluetongue poses to livestock farming in the UK and abroad. Bluetongue is a viral disease of cows and sheep that is transmitted by biting midges. Historically it has mainly affected African farms, but since 1998 the disease has been spreading across Europe. In 2007 one strain of the disease reached as far as the east coast of the UK. The disease is economically devastating and kills up to 70% of the sheep it infects.

Professor Roy continues "Bluetongue is an important virus to study because it poses such a threat to livestock farming, but it presents some considerable scientific challenges. By virus standards Bluetongue is quite architecturally complex and it has a relatively difficult genome to work with, so assembling it in a test tube was a significant challenge. No one had been able to get such a complicated virus to assemble outside a cell before."

Professor Roy and her team synthesised each of the virus's gene and protein building blocks separately and then combined them in the right order in order to produce a functional virus particle. Then, to check whether they had been successful, they infected some midge cells with the newly synthesized virus.

Professor Roy continues "When we injected the virus particles that we had assembled in the test tube into some midge cells they started behaving and replicating just as we would expect a wild virus to do. This was a really exciting moment. What had previously been a complex of proteins and other molecules whirred into activity and started making copies of itself."

Currently, Bluetongue vaccines are produced by chemical treatment of virulent viruses to inactivate them. These vaccines are effective at preventing the disease, but because it is difficult to tell the difference between animals that have been vaccinated from those that have recovered from an infection. This makes controlling outbreaks much more difficult.

This new approach provides an assembly kit for the virus which could allow scientists to design vaccines with useful properties. Developing a vaccine that is tagged with a marker, for example, would make it easier to tell the difference between animals that have been vaccinated and those that have suffered the disease.

Professor Douglas Kell, BBSRC Chief Executive, said "This is an exciting development and offers great potential for future vaccine development. Using the tools of synthetic biology, we are now able to assemble viruses piece by piece in a way that gives us far greater understanding of how they work. This approach could allow us to make safer and more effective vaccines against a range of viral diseases.

"However, whilst these technologies have great potential benefits we must ensure that scientists are mindful of the wider social and ethical implications of their work. In June 2010 BBSRC published the findings of a Synthetic Biology Dialogue which was carried out in partnership with the Engineering and Physical Sciences Research Council. The dialogue explored people's attitudes towards Synthetic Biology and their hopes and aspirations for the technology and will be used to inform science policy governing this new field."


'/>"/>

Contact: Mike Davies
mike.davies@bbsrc.ac.uk
44-179-341-4694
Biotechnology and Biological Sciences Research Council
Source:Eurekalert

Related biology technology :

1. Clemson scientists put a (nano) spring in their step
2. City of Hope Helps KGI Launch New Management Training Program for Scientists
3. University of Pennsylvania scientists move optical computing closer to reality
4. Scientists grow nanonets able to snare added energy transfer
5. The National Cancer Institute Joins the Global Community of Scientists Now Using BIOMARKERcenter From Thomson Reuters
6. Scientists peel away the mystery behind golds catalytic prowess
7. SACHEM Launches 2-D HPLC e-Learning Program : New e-Learning Program Teaches Scientists How to Better Analyze and Prove Product Purity Through Greater Sensitivity and Precision in Identification of Trace Components
8. Vermillion and Stanford Scientists Receive Best Research Award From the PAD Coalition
9. Brewing better beer: Scientists determine the genomic origins of lager yeasts
10. Tengion Scientists Publish Positive Preclinical Findings With Neo-Organ Demonstrating Long-term Durability and Growth With Skeletal Maturation
11. CU scientists create worlds thinnest balloon -- just one atom thick
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/3/2016)... 2016   ViaCyte, Inc ., a leading, ... stem cell-derived islet replacement therapy for the treatment ... announced that ViaCyte and Janssen Biotech, Inc., one ... Johnson, have agreed to consolidate the assets of ... provides ViaCyte with an exclusive license to all ...
(Date:2/3/2016)... -- With the growing need for better therapeutics, and ... such as monoclonal antibodies, recombinant protein therapeutics and ... are in high demand. Conventionally expression systems were ... of these therapeutics. However, due to issues with ... approaches and novel expression systems are currently being ...
(Date:2/3/2016)... Mass., Feb. 3, 2016 Harvard Apparatus ... biotechnology company developing bioengineered organ implants for life-threatening ... announced that CEO Jim McGorry , will ... Conference on Tuesday, February 9, 2016 at ... City . HART,s presentation will be webcast ...
(Date:2/3/2016)... ... February 03, 2016 , ... Aerocom, ... office dedicated to the North American healthcare market. , Aerocom Healthcare, LLC will ... The company will provide new pneumatic tube systems or expand existing systems ...
Breaking Biology Technology:
(Date:2/3/2016)... , February 4, 2016 --> ... to SEK 1,351.5 M (105.0), up 1,187% compared with fourth quarter of ... amounted to SEK 517.6 M (loss: 30.0). Earnings per share ... activities was SEK 537.4 M (neg: 74.7). , ... , Revenues amounted to SEK 2,900.5 M (233.6), up 1,142% compared with ...
(Date:2/2/2016)... NEW YORK , Feb. 2, 2016 /PRNewswire/ ... analysis of the bioinformatic market by reviewing the ... computer enabled tools that drive the field forward. ... report to: Identify the challenges and opportunities ... service providers and software solution developers, as well ...
(Date:2/1/2016)... Rising sales of consumer electronics ... intuitive gesture control market size ... consumer electronics coupled with new technological advancements to drive ... through 2020   --> ... advancements to drive global touchfree intuitive gesture control market ...
Breaking Biology News(10 mins):