Navigation Links
Scientists strive to replace silicon with graphene on nanocircuitry

Scientists have made a breakthrough toward creating nanocircuitry on graphene, widely regarded as the most promising candidate to replace silicon as the building block of transistors. They have devised a simple and quick one-step process based on thermochemical nanolithography (TCNL) for creating nanowires, tuning the electronic properties of reduced graphene oxide on the nanoscale and thereby allowing it to switch from being an insulating material to a conducting material.

The technique works with multiple forms of graphene and is poised to become an important finding for the development of graphene electronics. The research appears in the June 11, 2010, issue of the journal Science.

Scientists who work with nanocircuits are enthusiastic about graphene because electrons meet with less resistance when they travel along graphene compared to silicon and because today's silicon transistors are nearly as small as allowed by the laws of physics. Graphene also has the edge due to its thickness - it's a carbon sheet that is a single atom thick. While graphene nanoelectronics could be faster and consume less power than silicon, no one knew how to produce graphene nanostructures on such a reproducible or scalable method. That is until now.

"We've shown that by locally heating insulating graphene oxide, both the flakes and epitaxial varieties, with an atomic force microscope tip, we can write nanowires with dimensions down to 12 nanometers. And we can tune their electronic properties to be up to four orders of magnitude more conductive. We've seen no sign of tip wear or sample tearing," said Elisa Riedo, associate professor in the School of Physics at the Georgia Institute of Technology.

On the macroscale, the conductivity of graphene oxide can be changed from an insulating material to a more conductive graphene-like material using large furnaces.

Now, the research team used TCNL to increase the temperature of reduced graphene oxide at the nanoscale, so they can draw graphene-like nanocircuits. They found that when it reached 130 degrees Celsius, the reduced graphene oxide began to become more conductive.

"So the beauty of this is that we've devised a simple, robust and reproducible technique that enables us to change an insulating sample into a conducting nanowire. These properties are the hallmark of a productive technology," said Paul Sheehan, head of the Surface Nanoscience and Sensor Technology Section at the Naval Research Laboratory in Washington, D.C.

The research team tested two types of graphene oxide one made from silicon carbide, the other with graphite powder.

"I think there are three things about this study that make it stand out," said William P. King, associate professor in the Mechanical Science and Engineering department at the University of Illinois at Urbana-Champaign. "First, is that the entire process happens in one step. You go from insulating graphene oxide to a functional electronic material by simply applying a nano-heater. Second, we think that any type of graphene will behave this way. Third, the writing is an extremely fast technique. These nanostructures can be synthesized at such a high rate that the approach could be very useful for engineers who want to make nanocircuits."

"This project is an excellent example of the new technologies that epitaxial graphene electronics enables," said Walt de Heer, Regent's Professor in Georgia Tech's School of Physics and the original proponent of epitaxial graphene in electronics. His study led to the establishment of the Materials Research Science and Engineering Center two years ago. "The simple conversion from graphene oxide to graphene is an important and fast method to produce conducting wires. This method can be used not only for flexible electronics, but it is possible, sometime in the future, that the bio-compatible graphene wires can be used to measure electrical signals from single biological cells."


Contact: David Terraso
Georgia Institute of Technology

Related biology technology :

1. Prestigious International Champalimaud Vision Award to US Scientists
2. Scientists Give the Go-Ahead for Private Storage of Stem Cells From Umbilical Cord Blood
3. Scientists create artificial mini black hole
4. Hat-trick for University of Montreal scientists
5. Scientists boot up a bacterial cell with a synthetic genome
6. Scientists ID bacterial genes that improve plant growth
7. Nano parfait a treat for scientists
8. Berkeley Lab scientists create molecular paper
9. Brown University scientists discover new principle in material science
10. NIST scientists address wrinkles in transparent film development
11. Scientists discover worlds smallest superconductor
Post Your Comments:
Related Image:
Scientists strive to replace silicon with graphene on nanocircuitry
(Date:11/24/2015)... 24, 2015 Cepheid (NASDAQ: CPHD ) ... the following conference, and invited investors to participate via ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern ... New York, NY      Tuesday, December 1, ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... metabolism. But unless it is bound to proteins, copper is also toxic to ... researchers at Worcester Polytechnic Institute (WPI) will conduct a systematic study of copper ...
(Date:11/24/2015)... Global, Inc., a worldwide provider of clinical research services headquartered in ... company has set a new quarterly earnings record in Q3 of ... for Q3 of 2014 to Q3 of 2015.   ... with the establishment of an Asia-Pacific office ... Kingdom and Mexico , with the ...
(Date:11/24/2015)... (PRWEB) , ... November 24, 2015 , ... The Academy ... Special Interest Group (SIG), MultiGP, also known as Multirotor Grand Prix, to represent the ... last few years. Many AMA members have embraced this type of racing and several ...
Breaking Biology Technology:
(Date:11/19/2015)... , Nov. 19, 2015  Based on its in-depth ... Sullivan recognizes BIO-key with the 2015 Global Frost & ... Frost & Sullivan presents this award to the company ... to the needs of the market it serves. The ... meets and expands on customer base demands, the overall ...
(Date:11/18/2015)... 2015 --> ... market report titled  Gesture Recognition Market - Global Industry ... 2021. According to the report, the global gesture recognition market was valued ... reach US$29.1 bn by 2021, at a CAGR of ... America dominated the global gesture recognition market ...
(Date:11/17/2015)... 2015  Vigilant Solutions announces today that Mr. ... Directors. --> --> ... the partnership at TPG Capital, one of the largest ... Billion in revenue.  He founded and led TPG,s Operating ... companies, from 1997 to 2013.  In his first role, ...
Breaking Biology News(10 mins):