Navigation Links
Scientists restore movement to paralyzed limbs through artificial brain-muscle connections
Date:10/16/2008

Researchers in a study funded by the National Institutes of Health (NIH) have demonstrated for the first time that a direct artificial connection from the brain to muscles can restore voluntary movement in monkeys whose arms have been temporarily anesthetized. The results may have promising implications for the quarter of a million Americans affected by spinal cord injuries and thousands of others with paralyzing neurological diseases, although clinical applications are years away.

"This study demonstrates a novel approach to restoring movement through neuroprosthetic devices, one that would link a person's brain to the activation of individual muscles in a paralyzed limb to produce natural control and movements," said Joseph Pancrazio, Ph.D., a program director at the National Institute of Neurological Disorders and Stroke (NINDS).

The research was conducted by Eberhard E. Fetz, Ph.D., professor of physiology and biophysics at the University of Washington in Seattle and an NINDS Javits awardee; Chet T. Moritz, Ph.D., a post-doctoral fellow funded by NINDS; and Steve I. Perlmutter, Ph.D., research associate professor. The results appear in the online Oct. 15 issue of Nature. The study was performed at the Washington National Primate Research Center, which is funded by NIH's National Center for Research Resources.

In the study, the researchers trained monkeys to control the activity of single nerve cells in the motor cortex, an area of the brain that controls voluntary movements. Neuronal activity was detected using a type of brain-computer interface. In this case, electrodes implanted in the motor cortex were connected via external circuitry to a computer. The neural activity led to movements of a cursor, as monkeys played a target practice game.

After each monkey mastered control of the cursor, the researchers temporarily paralyzed the monkey's wrist muscles using a local anesthetic to block nerve conduction. Next, the researchers converted the activity in the monkey's brain to electrical stimulation delivered to the paralyzed wrist muscles. The monkeys continued to play the target practice gameonly now cursor movements were driven by actual wrist movementsdemonstrating that they had regained the ability to control the otherwise paralyzed wrist.

The group's approach is one of several lines of current neuroprosthetic research. Some investigators are using brain-computer interfaces to record signals from multiple neurons and convert those signals to control a robotic limb. Other researchers have delivered artificial stimulation directly to paralyzed arm muscles in order to drive arm movementa technique called functional electrical stimulation (FES). The Fetz study is the first to combine a brain-computer interface with real-time control of FES.

"A robotic arm would be better for someone whose physical arm has been lost or if the muscles have atrophied, but if you have an arm whose muscles can be stimulated, a person can learn to reactivate them with this technology," says Dr. Fetz.

Until now, brain-computer interfaces were designed to decode the activity of neurons known to be associated with movement of specific body parts. Here, the researchers discovered that any motor cortex cell, regardless of whether it had been previously associated with wrist movement, was capable of stimulating muscle activity. This finding greatly expands the potential number of neurons that could control signals for brain-computer interfaces and also illustrates the flexibility of the motor cortex.

"The cells don't have to have a preordained role in the movement. We can create a direct link between the cell and the motor output that the user can learn to control and optimize over time," says Dr. Fetz.

Dr. Fetz and his colleagues found that the monkeys' control over neuronal activityand the resulting control over stimulation of their wrist musclesimproved significantly with practice. Practice time was limited by the duration of the nerve block. Comparing the monkeys' performance during an initial two-minute practice and a two-minute peak performance period, the scientists found the monkeys successfully hit the target three times more frequently and with less error during the peak performance. In the future, greater control could be gained by using implanted circuits to create long-lasting artificial connections, allowing more time for learning and optimizing control, Dr. Fetz says.

The researchers also found that the monkeys could achieve independent control of both the wrist flexor and extensor muscles.

"An important next step will be to increase the number of direct connections between cortical cells and muscles to control coordinated activation of muscles," says Dr. Fetz.

If researchers are able to establish a connection between the motor cortex and sites in the spinal cord below the injury, people with spinal injuries may be able to achieve coordinated movements.

Clinical applications are still probably at least a decade away, according to Dr. Fetz. Better methods for recording cortical neurons and for controlling multiple muscles must be developed, along with implantable circuitry that could be used reliably and safely, he says.


'/>"/>

Contact: Lisa Gough
goughll@ninds.nih.gov
301-496-5751
NIH/National Institute of Neurological Disorders and Stroke
Source:Eurekalert

Related biology technology :

1. Gladstone scientists uncover potential mechanism of memory loss in Alzheimers disease
2. Three Studies by Independent Scientists Highlighting Pressure Cycling Technology (PCT) to be Presented this Week at the British Mass Spectrometry Societys 29th Annual Meeting
3. Social Network for Scientists Marks Ten Years Online
4. Scientists synthesize memory in yeast cells
5. Scientists synthesize memory in yeast cells
6. University of Leicester scientists discover technique to help friendly bacteria
7. Scientists discover how cancer may take hold
8. Yale scientists make 2 giant steps in advancement of quantum computing
9. New Scientists Boost Disease-based Research at Boston Biomedical Research Institute
10. Scientists say sabercat bit like a pussycat
11. New Corporate Website Launched - Focus on Life Scientists, Flow Cytometrists, & Clinicians
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/2/2016)... PA (PRWEB) , ... May 02, 2016 , ... ... proud to report on the pre-launch success of their revolutionary, veterinarian-designed product for ... cats to stalk, trap, and play with their food the way nature intended. ...
(Date:4/29/2016)... ... April 30, 2016 , ... The MIT bioLogic design team has won ... explored how bacterial properties can be applied to fabric and formed into living interfaces ... in response to humidity change. The team harvested Natto cells and applied them to ...
(Date:4/29/2016)... ... April 29, 2016 , ... ... medicine, is excited to announce the launch of the Proove Health Foundation ... volunteerism, and education to promote the use of personalized medicine for tackling the ...
(Date:4/29/2016)... ... April 29, 2016 , ... Amendia, Inc., ... surgical procedures, today announced the completion of a significant transaction and partnership that ... future customers and partners. Kohlberg & Company, L.L.C. (“Kohlberg”), a leading private ...
Breaking Biology Technology:
(Date:4/28/2016)... FRANCISCO and BANGALORE, India , ... of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... provider, today announced a global partnership that will ... way to use mobile banking and payment services. ... is a key innovation area for financial services, but it ...
(Date:4/28/2016)... GOTHENBURG, Sweden , April 28, 2016 ... 1,491.2 M (139.9), up 966% compared with the first quarter of ... Operating profit totaled SEK 589.1 M (loss: 18.8) and the operating ... SEK 7.12 (loss: 0.32) Cash flow from operations was ... , The 2016 revenue guidance is unchanged, SEK 7,000-8,500 M. ...
(Date:4/26/2016)... BANGALORE, India and LONDON ... Infosys Finacle, part of EdgeVerve Systems, a ... ), and Onegini today announced a partnership to ... banking solutions.      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ... banks to provide their customers enhanced security to ...
Breaking Biology News(10 mins):