Navigation Links
Scientists grow 'nanonets' able to snare added energy transfer
Date:9/2/2008

CHESTNUT HILL, MA (September 2, 2008) Using two abundant and relatively inexpensive elements, Boston College chemists have produced nanonets, a flexible webbing of nano-scale wires that multiplies surface area critical to improving the performance of the wires in electronics and energy applications.

Researchers grew wires from titanium and silicon into a two-dimensional network of branches that resemble flat, rectangular netting, Assistant Professor of Chemistry Professor Dunwei Wang and his team report in the international edition of the German Chemical Society journal Angewandte Chemie.

By creating nanonets, the team conquered a longstanding engineering challenge in nanotechnology: creating a material that is extremely thin yet maintains its complexity, a structural design large or long enough to efficiently transfer an electrical charge.

"We wanted to create a nano structure unlike any other with a relatively large surface area," said Wang. "The goal was to increase surface area and maintain the structural integrity of the material without sacrificing surface area and thereby improving performance."

Tests showed an improved performance in the material's ability to conduct electricity through high quality connections of the nanonet, which suggest the material could lend itself to applications from electronics to energy-harvesting, Wang said. Titanium disilicide (TiSi2) has been proven to absorb light across a wide range of the solar spectrum, is easily obtained, and is inexpensive. Metal silicides are also found in microelectronics devices.

The nanonets grew spontaneously from the bottom-up through simple chemical reactions, unprovoked by a catalyst, according to Wang and co-authors, post doctoral researcher Xiaohua Liu and graduate students Sa Zhou and Yongjing Lin.

Basic nano structures are commonly created in zero or one dimension, such as a dot composed of a small number of atoms. The most complex structures grow in three dimensions somewhat resembling the branches of a tree. Working in 2D, Wang's team produced a web that under a microscope resembles a tree with all branches growing in the same perpendicular direction from the trunk.

Using titanium disilicide intrigued Wang because of the material's superior conductivity. Late last year, researchers at the Max Planck Institute for Bioinorganic Chemistry observed that a titanium disilicide semiconductor photo catalyst splits water into hydrogen and oxygen. The semiconductor also stores the gases produced, enabling the simple separation of hydrogen and oxygen. So-called water splitting may play a key role in producing hydrogen for fuel.

"We're excited to have discovered this unique structure and we are already at work to gauge just how much the nanonet can improve the performance of a material that is already used in electronics and clean energy applications," said Wang.


'/>"/>

Contact: Ed Hayward
ed.hayward@bc.edu
617-552-4826
Boston College
Source:Eurekalert  

Related biology technology :

1. Gladstone scientists uncover potential mechanism of memory loss in Alzheimers disease
2. Three Studies by Independent Scientists Highlighting Pressure Cycling Technology (PCT) to be Presented this Week at the British Mass Spectrometry Societys 29th Annual Meeting
3. Social Network for Scientists Marks Ten Years Online
4. Scientists synthesize memory in yeast cells
5. Scientists synthesize memory in yeast cells
6. University of Leicester scientists discover technique to help friendly bacteria
7. Scientists discover how cancer may take hold
8. Yale scientists make 2 giant steps in advancement of quantum computing
9. New Scientists Boost Disease-based Research at Boston Biomedical Research Institute
10. Scientists say sabercat bit like a pussycat
11. New Corporate Website Launched - Focus on Life Scientists, Flow Cytometrists, & Clinicians
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Scientists grow 'nanonets' able to snare added energy transfer
(Date:10/11/2017)... LAGUNA HILLS, Calif. , Oct. 11, 2017 ... London (ICR) and University of ... prognostic tool to risk-stratify patients with multiple myeloma (MM), in ... nine . The University of Leeds ... by Myeloma UK, and ICR will perform the testing services ...
(Date:10/11/2017)... TX (PRWEB) , ... October 11, 2017 , ... ... August compared the implantation and pregnancy rates in frozen and fresh in ... contribution of progesterone and maternal age to IVF success. , After comparing the ...
(Date:10/10/2017)... ... ... San Diego-based team building and cooking events company, Lajollacooks4u, has unveiled a ... new look is part of a transformation to increase awareness, appeal to new markets ... It will also expand its service offering from its signature gourmet cooking classes and ...
(Date:10/10/2017)... (PRWEB) , ... October 10, 2017 , ... ... Science Center’s FirstHand program has won a US2020 STEM Mentoring Award. Representatives of ... award for Excellence in Volunteer Experience from US2020. , US2020’s mission is to ...
Breaking Biology Technology:
(Date:4/11/2017)... , April 11, 2017 NXT-ID, ... security technology company, announces the appointment of independent Directors Mr. ... to its Board of Directors, furthering the company,s corporate ... ... NXT-ID, we look forward to their guidance and benefiting from ...
(Date:4/5/2017)... 2017 KEY FINDINGS The global ... a CAGR of 25.76% during the forecast period of ... factor for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is ... geography. The stem cell market of the product is ...
(Date:3/30/2017)... The research team of The Hong Kong Polytechnic University (PolyU) ... ground breaking 3D fingerprint minutiae recovery and matching technology, pushing contactless ... use in identification, crime investigation, immigration control, security of access and ... ... A research team led by Dr Ajay Kumar ...
Breaking Biology News(10 mins):