Navigation Links
Scientists grow 'nanonets' able to snare added energy transfer

CHESTNUT HILL, MA (September 2, 2008) Using two abundant and relatively inexpensive elements, Boston College chemists have produced nanonets, a flexible webbing of nano-scale wires that multiplies surface area critical to improving the performance of the wires in electronics and energy applications.

Researchers grew wires from titanium and silicon into a two-dimensional network of branches that resemble flat, rectangular netting, Assistant Professor of Chemistry Professor Dunwei Wang and his team report in the international edition of the German Chemical Society journal Angewandte Chemie.

By creating nanonets, the team conquered a longstanding engineering challenge in nanotechnology: creating a material that is extremely thin yet maintains its complexity, a structural design large or long enough to efficiently transfer an electrical charge.

"We wanted to create a nano structure unlike any other with a relatively large surface area," said Wang. "The goal was to increase surface area and maintain the structural integrity of the material without sacrificing surface area and thereby improving performance."

Tests showed an improved performance in the material's ability to conduct electricity through high quality connections of the nanonet, which suggest the material could lend itself to applications from electronics to energy-harvesting, Wang said. Titanium disilicide (TiSi2) has been proven to absorb light across a wide range of the solar spectrum, is easily obtained, and is inexpensive. Metal silicides are also found in microelectronics devices.

The nanonets grew spontaneously from the bottom-up through simple chemical reactions, unprovoked by a catalyst, according to Wang and co-authors, post doctoral researcher Xiaohua Liu and graduate students Sa Zhou and Yongjing Lin.

Basic nano structures are commonly created in zero or one dimension, such as a dot composed of a small number of atoms. The most complex structures grow in three dimensions somewhat resembling the branches of a tree. Working in 2D, Wang's team produced a web that under a microscope resembles a tree with all branches growing in the same perpendicular direction from the trunk.

Using titanium disilicide intrigued Wang because of the material's superior conductivity. Late last year, researchers at the Max Planck Institute for Bioinorganic Chemistry observed that a titanium disilicide semiconductor photo catalyst splits water into hydrogen and oxygen. The semiconductor also stores the gases produced, enabling the simple separation of hydrogen and oxygen. So-called water splitting may play a key role in producing hydrogen for fuel.

"We're excited to have discovered this unique structure and we are already at work to gauge just how much the nanonet can improve the performance of a material that is already used in electronics and clean energy applications," said Wang.


Contact: Ed Hayward
Boston College

Related biology technology :

1. Gladstone scientists uncover potential mechanism of memory loss in Alzheimers disease
2. Three Studies by Independent Scientists Highlighting Pressure Cycling Technology (PCT) to be Presented this Week at the British Mass Spectrometry Societys 29th Annual Meeting
3. Social Network for Scientists Marks Ten Years Online
4. Scientists synthesize memory in yeast cells
5. Scientists synthesize memory in yeast cells
6. University of Leicester scientists discover technique to help friendly bacteria
7. Scientists discover how cancer may take hold
8. Yale scientists make 2 giant steps in advancement of quantum computing
9. New Scientists Boost Disease-based Research at Boston Biomedical Research Institute
10. Scientists say sabercat bit like a pussycat
11. New Corporate Website Launched - Focus on Life Scientists, Flow Cytometrists, & Clinicians
Post Your Comments:
Related Image:
Scientists grow 'nanonets' able to snare added energy transfer
(Date:11/27/2015)... PA (PRWEB) , ... November 27, 2015 , ... ... Technical Program that includes over 2,000 technical presentations offered in symposia, oral ... chemistry and applied spectroscopy, covers a wide range of applications such as, but ...
(Date:11/26/2015)... CHESHAM , England , November 26, ... Lightpoint Medical, an innovative medical device company specializing in ... Euro grant from the European Commission as part of the ... enabling the company to carry out a large-scale clinical trial ... -->      (Logo: , ...
(Date:11/25/2015)... 2 nouvelles études permettent d , ... les souches bactériennes retrouvées dans la plaque dentaire ... . Ces recherches  ouvrent une nouvelle voie ... de l,un des problèmes de santé les plus ... --> 2 nouvelles études permettent d , ...
(Date:11/25/2015)... -- Neurocrine Biosciences, Inc. (Nasdaq: NBIX ) announced today ... Neurocrine Biosciences, will be presenting at the 27th Annual ... . .   Listeners ... prior to the presentation to download or install any ... available on the website approximately one hour after the ...
Breaking Biology Technology:
(Date:10/29/2015)... 2015 Daon, a global leader in mobile ... a new version of its IdentityX Platform , ... America have already installed IdentityX v4.0 and ... FIDO UAF certified server component as an ... FIDO features. These customers include some of the largest ...
(Date:10/29/2015)... Connecticut , October 29, 2015 ... a biometric authentication company focused on the growing ... smart wallet announces that StackCommerce, a leading marketplace ... be featuring the Wocket® smart wallet on StackSocial ... NXTD ) ("NXT-ID" or the "Company"), a biometric ...
(Date:10/27/2015)... Munich, Germany , ... (ASGM) automatically maps data from mobile eye tracking videos ... so that they can be quantitatively analyzed with SMI,s ... Germany , October 28-29, 2015. SMI,s Automated Semantic ... eye tracking videos created with SMI,s Eye Tracking ...
Breaking Biology News(10 mins):