Navigation Links
Scientists develop tools to make more complex biological machines from yeast
Date:3/20/2012

Scientists are one step closer to making more complex microscopic biological machines, following improvements in the way that they can "re-wire" DNA in yeast, according to research published today in the journal PLoS ONE.

The researchers, from Imperial College London, have demonstrated a way of creating a new type of biological "wire", using proteins that interact with DNA and behave like wires in electronic circuitry. The scientists say the advantage of their new biological wire is that it can be re-engineered over and over again to create potentially billions of connections between DNA components. Previously, scientists have had a limited number of "wires" available with which to link DNA components in biological machines, restricting the complexity that could be achieved.

The team has also developed more of the fundamental DNA components, called "promoters", which are needed for re-programming yeast to perform different tasks. Scientists currently have a very limited catalogue of components from which to engineer biological machines. By enlarging the components pool and making it freely available to the scientific community via rapid Open Access publication, the team in today's study aims to spur on development in the field of synthetic biology.

Future applications of this work could include tiny yeast-based machines that can be dropped into water supplies to detect contaminants, and yeast that records environmental conditions during the manufacture of biofuels to determine if improvements can be made to the production process.

Dr Tom Ellis, senior author of the paper from the Centre for Synthetic Biology and Innovation and the Department of Bioengineering at Imperial College London, says: "From viticulture to making bread, humans have been working with yeast for thousands of years to enhance society. Excitingly, our work is taking us closer to developing more complex biological machines with yeast. These tiny biological machines could help to improve things such as pollution monitoring and cleaner fuels, which could make a difference in all our lives."

Dr Benjamin Blount, first author of the paper from the Centre for Synthetic Biology and Innovation and the Department of Bioengineering at Imperial College London, says: "Our new approach to re-wiring yeast opens the door to an exciting array of more complex biological devices, including cells engineered to carry out tasks similar to computers."

In the study, the Imperial researchers modified a protein-based technology called TAL Effectors, which produce TALOR proteins, with similar qualities to wires in electronic devices. These TALORS can be easily re-engineered, which means that they can connect with many DNA-based components without causing a short circuit in the device.

The team says their research now provides biological engineers working in yeast with a valuable new toolbox.

Professor Richard Kitney, Co-Director of the Centre for Synthetic Biology and Innovation at the College, adds: "The work by Dr Ellis and the team at the Centre really takes us closer to developing much more complex biological machines with yeast, which may help to usher in a new age where biological machines could help to improve our health, the way we work, play and live."

Professor Paul Freemont, Co-Director of the Centre for Synthetic Biology and Innovation at the College, concludes: "One of the core aims of the Centre is to provide tools and resources to the wider scientific community by sharing our research. Dr Ellis's team has now begun to assemble characterised biological parts for yeast that will be available to researchers both in academia and industry."


'/>"/>

Contact: Colin Smith
cd.smith@imperial.ac.uk
44-207-594-6712
Imperial College London
Source:Eurekalert

Related biology technology :

1. Clemson scientists put a (nano) spring in their step
2. City of Hope Helps KGI Launch New Management Training Program for Scientists
3. University of Pennsylvania scientists move optical computing closer to reality
4. Scientists grow nanonets able to snare added energy transfer
5. The National Cancer Institute Joins the Global Community of Scientists Now Using BIOMARKERcenter From Thomson Reuters
6. Scientists peel away the mystery behind golds catalytic prowess
7. SACHEM Launches 2-D HPLC e-Learning Program : New e-Learning Program Teaches Scientists How to Better Analyze and Prove Product Purity Through Greater Sensitivity and Precision in Identification of Trace Components
8. Vermillion and Stanford Scientists Receive Best Research Award From the PAD Coalition
9. Brewing better beer: Scientists determine the genomic origins of lager yeasts
10. Tengion Scientists Publish Positive Preclinical Findings With Neo-Organ Demonstrating Long-term Durability and Growth With Skeletal Maturation
11. CU scientists create worlds thinnest balloon -- just one atom thick
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. is ... has received AOAC Research Institute approval 061601. , “This is another AOAC-RI approval ... Bob Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the Industry ... Supplyframe Design Lab . Located in Pasadena, Calif., the Design Lab’s mission ... hardware projects are designed, built and brought to market. , The Design Lab ...
(Date:6/23/2016)...  Blueprint Bio, a company dedicated to identifying, protecting ... has closed its Series A funding round, according to ... "We have received a commitment from Forentis Fund that ... meet our current goals," stated Matthew Nunez . ... complete validation on the current projects in our pipeline, ...
(Date:6/23/2016)... WI (PRWEB) , ... June 23, 2016 , ... ... focused on quality, regulatory and technical consulting, provides a free webinar ... presented on July 13, 2016 at 12pm CT at no charge. , Incomplete ...
Breaking Biology Technology:
(Date:5/16/2016)... , May 16, 2016   EyeLock LLC ... today announced the opening of an IoT Center of ... strengthen and expand the development of embedded iris biometric ... unprecedented level of convenience and security with unmatched biometric ... one,s identity aside from DNA. EyeLock,s platform uses video ...
(Date:4/28/2016)... BANGALORE, India , April 28, 2016 /PRNewswire/ ... product subsidiary of Infosys (NYSE: INFY ), and ... global partnership that will provide end customers with ... banking and payment services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ... area for financial services, but it also plays a fundamental ...
(Date:4/19/2016)... April 20, 2016 The new ... a compact web-based "all-in-one" system solution for all door ... reader or the door interface with integration authorization management ... control systems. The minimal dimensions of the access control ... the building installations offer considerable freedom of design with ...
Breaking Biology News(10 mins):