Navigation Links
Scientists develop new technologies for understanding bacterial infections

Understanding how bacteria infect cells is crucial to preventing countless human diseases. In a recent breakthrough, scientists from the University of Bristol have discovered a new approach for studying molecules within their natural environment, opening the door to understanding the complexity of how bacteria infect people.

The research, led by a team of biochemists, microbiologists and physicists and published in the Proceedings of the National Academy of Sciences (PNAS), provides an unprecedented level of detail of the consequences of a bacterium approaching another cell, directly in situ.

Until now, traditional approaches to understanding infection have focused on either studies of the cells involved or dissection of individual molecules present within the cells. Leo Brady, Professor of Biochemistry and Mumtaz Virji, Professor of Molecular Microbiology, who led the research, have developed a novel method for bridging these, until now, separate approaches.

The team studied the common bacterium Moraxella catarrhalis, which causes middle ear infections in young children, and is a major cause of morbidity in those with heart disease. For many years, scientists approached this problem from the molecular medicine approach through isolating and studying proteins from the Moraxella cell surface that initiate infection.

From these detailed studies the team have been able to develop an overview of one of the key proteins, called UspA1. However, as with the vast majority of molecular medicine approaches, this model has been based on studies of the UspA1 protein in isolation, rather than in its natural setting on the bacterium surface. A common worry for many biomedical scientists is how such understanding translates into the reality of these tiny molecules when they are part of a much larger cell. Understanding the increased complexity of individual molecules within the cellular mle is crucial to understanding why many promising drugs fail to live up to expectations.

To begin bridging this gap in our understanding, Professors Brady and Virji teamed up with Dr Massimo Antognozzi from the University's School of Physics, whose group have been developing a novel form of atomic force microscope, termed the lateral molecular force microscope (LMFM).

Together, they have evolved the design of the LMFM microscope to optimise its ability to measure biological phenomena such as changes in UspA1 directly at the Moraxella cell surface. The LMFM differs from more conventional atomic force microscopes in tapping samples (in this case, individual cells) against an extremely fine lever, equivalent to the stylus of a record player, rather than moving the lever as is usually the case. Fabrication of extremely thin but stiff cantilevers together with exceptionally fine motor movements and a specialised visualisation system have all been combined in the device to tremendous effect. The sensitivity achieved has been further enhanced by its location within the extremely low vibration environment provided within the University's innovative Nanoscience and Quantum Information building. The result has been a machine that can measure exquisitely fine molecular changes and forces in individual molecules directly on a living cell surface.

In the Moraxella study, this development has enabled the research team to correlate intricate, atomic level detail of UspA1 obtained by X-ray crystallography of isolated fragments of the protein with delicate and previously unobservable physical changes of the bacterial cell as it binds to and infects its target human cells.

Professor Brady said: "The findings have triggered the development of a novel technology that promises to open up a new approach for studying molecular medicine. This breakthrough will undoubtedly prove equally useful for the study of many other biological processes directly within their cellular environment, something that has long been needed in molecular medicine."

This combined study has enabled the researchers to observe the very first responses as a bacterium binds to a human cell, hence opening the door to understanding the complexity of infection processes.


Contact: Caroline Clancy
University of Bristol

Related biology technology :

1. Syngene Expands Ongoing Relationship with CAS to Provide SciFinder® to All Its Scientists
2. A*Star scientists discover how to combat hospital-acquired infections and life-threatening toxins
3. Nottingham scientists pioneer new method for nanoribbon production
4. Scientists pinpoint river flow associated with cholera outbreaks, not just global warming
5. Scientists take a step towards developing better vaccines for bluetongue
6. Rice scientists build battery in a nanowire
7. Comprendia and New England Biolabs Connect Epigenetics Scientists with New Social Media Application
8. Scientists shed light on the private lives of electrons
9. Scientists hope to get glimpse of adolescent universe from revolutionary instrument-on-a-chip
10. Berkeley scientists pioneer nanoscale nuclear materials testing capability
11. N.C. Scientists Plant Plants to be Manufacturing Plants
Post Your Comments:
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... announced the funding of a Sponsored Research Agreement ... circulating tumor cells (CTCs) from cancer patients.  The ... in CTC levels correlate with clinical outcomes in ... These data will then be employed to support ...
(Date:6/24/2016)... June 24, 2016 Epic Sciences unveiled ... cancers susceptible to PARP inhibitors by targeting homologous ... (CTCs). The new test has already been incorporated ... multiple cancer types. Over 230 clinical ... response pathways, including PARP, ATM, ATR, DNA-PK and ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... of its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with ... in this eBook by providing practical tips, tools, and strategies for clinical researchers. ...
(Date:6/23/2016)... /PRNewswire/ - FACIT has announced the creation of ... company, Propellon Therapeutics Inc. ("Propellon" or "the Company"), ... portfolio of first-in-class WDR5 inhibitors for the treatment ... represent an exciting class of therapies, possessing the ... cancer patients. Substantial advances have been achieved with ...
Breaking Biology Technology:
(Date:6/9/2016)... Paris Police Prefecture and ... ensure the safety of people and operations in several locations ... Teleste, an international technology group specialised in broadband ... its video security solution will be utilised by ... across the country. The system roll-out is scheduled for the ...
(Date:6/2/2016)... The Department of Transport Management (DOTM) ... million US Dollar project, for the , Supply ... Enrolment, and IT Infrastructure , to ... implementation of Identity Management Solutions. Numerous renowned international vendors participated ... was selected for the most compliant and innovative ...
(Date:6/1/2016)... , June 1, 2016 ... in Election Administration and Criminal Identification to Boost Global ... a recently released TechSci Research report, " Global Biometrics ... Region, Competition Forecast and Opportunities, 2011 - 2021", the ... billion by 2021, on account of growing security concerns ...
Breaking Biology News(10 mins):