Navigation Links
Scientists achieve highest-resolution MRI of a magnet

COLUMBUS, Ohio -- In a development that holds potential for both data storage and biomedical imaging, Ohio State University researchers have used a new technique to obtain the highest-ever resolution MRI scan of the inside of a magnet.

Chris Hammel, Ohio Eminent Scholar in Experimental Physics, and his colleagues took a tiny magnetic disk -- measuring only 2 micrometers (millionths of a meter) across and 40 nanometers (billionths of a meter) thick and were able to obtain magnetic resonance images its interior.

The resulting image -- with each "pixel" one tenth the size of the disk itself -- is the highest-resolution image ever taken of the magnetic fields and interactions inside of a magnet.

Why look inside magnets? Because studying the material's behavior at these tiny scales is key to incorporating them into computer chips and other electronic devices.

The researchers report their findings in the August 12 issue of the journal Nature.

In 2008, Hammel's team debuted a new kind of high-resolution scanning system that combines three different kinds of technology: MRI, ferromagnetic resonance, and atomic force microscopy.

Ferromagnets -- the type of magnet used in this study -- are magnets made of ferrous metal such as iron. Common household refrigerator magnets are ferromagnets.

Because ferromagnets retain a particular polarization once magnetized, they are already essential components in today's computers and other electronics, where they provide data storage alongside computer chips. But smaller magnets built directly into a computer chip could do even more, Hammel explained.

"We know that shrinking these magnets to the nanoscale and building them directly inside electronics would enable these devices to do more, and with less power consumption," Hammel said. "But a key barrier has always been the difficulty of imaging and characterizing nanomagnets."

Typical MRI machines work by inducing a magnetic field inside non-magnetic objects, such as the body. Since ferromagnets are already magnetic, conventional MRI can't see inside them.

The combination technique that the Ohio State researchers invented is called "scanned probe ferromagnetic resonance imaging," or scanned probe FMRI, and it involves detecting a magnetic signal using a tiny silicon bar with an even tinier magnetic probe on its tip.

In Nature, they report a successful demonstration of the technique, as they imaged the inside of the magnetic disk 0.2 micrometers (200 nanometers) at a time. They used a thin film of a commercially available nickel-iron magnetic alloy called Permalloy for the disk.

"In essence, we were able to conduct ferromagnetic resonance measurements on a small fraction of the disk, then move our probe over a little bit and do magnetic resonance there, and so on," explained Denis Pelekhov, director of the ENCOMM NanoSystems Laboratory at Ohio State. "Using these results, we could see how the magnetic properties vary inside the disk."

Experts suspect that computer chips equipped with tiny magnets might one day provide high-density data storage. Computers with magnets in their central processing units (CPUs) would never have to boot up. The entire computer would be contained inside the CPU, making such devices even smaller and less power-hungry as well.

Hammel believes that the technique could one day be useful tool in biomedical research labs. Researchers could use it to study tissue samples of the plaques that form in brain tissues and arteries, and perhaps develop better ways of detecting them in the body. Knowing how these plaques form could advance studies of many diseases, including Alzheimer's and atherosclerosis.


Contact: Chris Hammel
Ohio State University

Related biology technology :

1. Univfy and Stanford Scientists Develop the First Personalized Prognostic Test to Predict Live Birth Outcomes with In Vitro Fertilization
2. Stanford scientists develop new way to grow adult stem cells in culture
3. Princeton scientists find unusual electrons that go with the flow
4. Twelve Women Scientists Announced as Winners of Elsevier Foundation TWOWS Awards
5. Scientists strive to replace silicon with graphene on nanocircuitry
6. Prestigious International Champalimaud Vision Award to US Scientists
7. Scientists Give the Go-Ahead for Private Storage of Stem Cells From Umbilical Cord Blood
8. Scientists create artificial mini black hole
9. Hat-trick for University of Montreal scientists
10. Scientists boot up a bacterial cell with a synthetic genome
11. Scientists ID bacterial genes that improve plant growth
Post Your Comments:
Related Image:
Scientists achieve highest-resolution MRI of a magnet
(Date:11/24/2015)... CITY , Nov. 24, 2015 /PRNewswire/ - ... "Company") announced today that the remaining 11,000 post-share ... Share Purchase Warrants (the "Series B Warrants") subject ... were exercised on November 23, 2015, which will ... Shares.  After giving effect to the issuance of ...
(Date:11/24/2015)... ... November 24, 2015 , ... In harsh ... Insertion points for in-line sensors can represent a weak spot where leaking process ... series of retractable sensor housings , which are designed to tolerate extreme process ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... Technologies, Inc., on being named to Deloitte's 2015 Technology Fast 500 list of ... OrthoAccel manufactures AcceleDent®, a FDA-cleared, Class II medical device that speeds up orthodontic ...
(Date:11/24/2015)... 2015 Capricor Therapeutics, Inc. (NASDAQ: ... discovery, development and commercialization of first-in-class therapeutics, today announced ... is scheduled to present at the 2015 Piper Jaffray ... EST, at The Lotte New York Palace Hotel in ... . --> . ...
Breaking Biology Technology:
(Date:11/4/2015)... , November 4, 2015 ... new market report published by Transparency Market Research "Home Security ... Trends and Forecast 2015 - 2022", the global home security ... 30.3 bn by 2022. The market is estimated to ... period from 2015 to 2022. Rising security needs among ...
(Date:10/29/2015)... ARBOR, Mich. , Oct. 29, 2015 /PRNewswire/ ... Eurofins Genomics for U.S. distribution of its DNA ... DNA-seq kit and Rubicon,s new ThruPLEX Plasma-seq kit. ... to enable the preparation of NGS libraries for ... plasma for diagnostic and prognostic applications in cancer ...
(Date:10/27/2015)... 2015 Munich, Germany ... technology (ASGM) automatically maps data from mobile eye tracking ... , so that they can be quantitatively analyzed with ... Munich, Germany , October 28-29, 2015. SMI,s Automated ... mobile eye tracking videos created with SMI,s Eye ...
Breaking Biology News(10 mins):