Navigation Links
Rice team boosts silicon-based batteries

HOUSTON (Nov. 1, 2012) Researchers at Rice University have refined silicon-based lithium-ion technology by literally crushing their previous work to make a high-capacity, long-lived and low-cost anode material with serious commercial potential for rechargeable lithium batteries.

The team led by Rice engineer Sibani Lisa Biswal and research scientist Madhuri Thakur reported in Nature's open access journal Scientific Reports on the creation of a silicon-based anode, the negative electrode of a battery, that easily achieves 600 charge-discharge cycles at 1,000 milliamp hours per gram (mAh/g). This is a significant improvement over the 350 mAh/g capacity of current graphite anodes.

That puts it squarely in the realm of next-generation battery technology competing to lower the cost and extend the range of electric vehicles.

The new work by Rice through the long-running Lockheed Martin Advanced Nanotechnology Center of Excellence at Rice (LANCER) is the next and biggest logical step since the partners began investigating batteries four years ago.

"We previously reported on making porous silicon films," said Biswal, an assistant professor of chemical and biomolecular engineering. "We have been looking to move away from the film geometry to something that can be easily transferred into the current battery manufacturing process. Madhuri crushed the porous silicon film to form porous silicon particulates, a powder that can be easily adopted by battery manufacturers."

Silicon can hold 10 times more lithium ions than the graphite commonly used in anodes today. But there's a problem: Silicon more than triples its volume when completely lithiated. When repeated, this swelling and shrinking causes silicon to quickly break down.

Many researchers have been working on strategies to make silicon more suitable for battery use. Scientists at Rice and elsewhere have created nanostructured silicon with a high surface-to-volume ratio, which allows the silicon to accommodate a larger volume expansion. Biswal, lead author Thakur and co-author Michael Wong, a professor of chemical and biomolecular engineering and of chemistry, tried the opposite approach; they etched pores into silicon wafers to give the material room to expand. By earlier this year, they had advanced to making sponge-like silicon films that showed even more promise.

But even those films presented a problem for manufacturers, Thakur said. "They're not easy to handle and would be difficult to scale up." But by crushing the sponges into porous grains, the material gains far more surface area to soak up lithium ions.

Biswal held up two vials, one holding 50 milligrams of crushed silicon, the other 50 milligrams of porous silicon powder. The difference between them was obvious. "The surface area of our material is 46 square meters per gram," she said. "Crushed silicon is 0.71 square meters per gram. So our particles have more than 50 times the surface area, which gives us a larger surface area for lithiation, with plenty of void space to accommodate expansion." The porous silicon powder is mixed with a binder, pyrolyzed polyacrylonitrile (PAN), which offers conductive and structural support.

"As a powder, they can be used in large-scale roll-to-roll processing by industry," Thakur said. "The material is very simple to synthesize, cost-effective and gives high energy capacity over a large number of cycles."

"This work shows just how important and useful it is to be able to control the internal pores and the external size of the silicon particles," Wong said.

In recent experiments, Thakur designed a half-cell battery with lithium metal as the counter electrode and fixed the capacity of the anode to 1,000 mAh/g. That was only about a third of its theoretical capacity, but three times better than current batteries. The anodes lasted 600 charge-discharge cycles at a C/2 rate (two hours to charge and two hours to discharge). Another anode continues to cycle at a C/5 rate (five-hour charge and five-hour discharge) and is expected to remain at 1,000 mAh/g for more than 700 cycles.

"This successful endeavor between Rice University and Lockheed Martin Mission Systems and Sensors will provide a significant improvement in battery technology by the development of this inexpensive manufacturing technique for silicon anode material," said Steven Sinsabaugh, a Lockheed Martin Fellow who works with LANCER and a co-author of the paper along with Lockheed Martin researcher Mark Isaacson. "We're truly excited about this breakthrough and are looking forward to transitioning this technology to the commercial marketplace."

"The next step will be to test this porous silicon powder as an anode in a full battery," Biswal said. "Our preliminary results with cobalt oxide as the cathode appear very promising, and there are new cathode materials that we'd like to investigate."


Contact: David Ruth
Rice University

Related biology technology :

1. Published Findings In Human Gene Therapy Methods Journal Demonstrate Cardiums New Catheter-Based Method Significantly Boosts Gene Delivery To The Heart
2. New gene therapy strategy boosts levels of deficient protein in Friedreichs ataxia
3. NeuroTracker boosts concentration for Olympic shooter
4. Preliminary Figures for 2011: Sartorius Grows at Double-Digit Rates and Boosts Operating Earnings by More Than 30%
5. Unzipped carbon nanotubes could help energize fuel cells and batteries, Stanford scientists say
6. Nanoparticle electrode for batteries could make grid-scale power storage feasible
Post Your Comments:
Related Image:
Rice team boosts silicon-based batteries
(Date:11/24/2015)... ... November 24, 2015 , ... Copper is an essential ... bound to proteins, copper is also toxic to cells. With a $1.3 million ... (WPI) will conduct a systematic study of copper in the bacteria Pseudomonas aeruginosa ...
(Date:11/24/2015)... Inc., a worldwide provider of clinical research services headquartered in ... has set a new quarterly earnings record in Q3 of 2015.  ... Q3 of 2014 to Q3 of 2015.   ... the establishment of an Asia-Pacific office to ... and Mexico , with the establishment ...
(Date:11/24/2015)... ... November 24, 2015 , ... The Academy of Model ... Group (SIG), MultiGP, also known as Multirotor Grand Prix, to represent the First–Person View ... years. Many AMA members have embraced this type of racing and several new model ...
(Date:11/24/2015)... Ltd. (OTCQB: TIKRF) today announced that its Annual General Meeting of Shareholders ... Israel time, at the law offices of Goldfarb Seligman ... Floor, Tel Aviv, Israel . ... to the Board of Directors; , election of Liat ... an amendment to certain terms of options granted to our Chief Executive ...
Breaking Biology Technology:
(Date:10/29/2015)... Oct. 29, 2015  Rubicon Genomics, Inc., today ... distribution of its DNA library preparation products, including ... new ThruPLEX Plasma-seq kit. ThruPLEX Plasma-seq has been ... of NGS libraries for liquid biopsies--the analysis of ... prognostic applications in cancer and other conditions. Eurofins ...
(Date:10/27/2015)... 27, 2015 Munich, Germany ... Mapping technology (ASGM) automatically maps data from mobile eye ... , so that they can be quantitatively analyzed ... Munich, Germany , October 28-29, 2015. SMI,s ... from mobile eye tracking videos created with SMI,s ...
(Date:10/23/2015)... DUBLIN , Oct. 23, 2015 Research ... of the "Global Voice Recognition Biometrics Market 2015-2019" ... --> --> The global voice recognition ... during 2014-2019. --> ... 2015-2019, has been prepared based on an in-depth market ...
Breaking Biology News(10 mins):