Navigation Links
Rice discovery points way to graphene circuits
Date:8/5/2011

HOUSTON -- (Aug. 4, 2011) -- Rice University materials scientists have made a fundamental discovery that could make it easier for engineers to build electronic circuits out of the much-touted nanomaterial graphene.

Graphene's stock shot sky-high last year when the nanomaterial attracted the Nobel Prize in physics. Graphene is a layer of carbon atoms that is just one atom thick. When stacked atop one another, graphene sheets form graphite, the material found in pencils the world over. Thanks to the tools of nanotechnology, scientists today can make, manipulate and study graphene with ease. Its unique properties make it ideal for creating faster, more energy-efficient computers and other nanoelectronic devices.

But there are hurdles. To make tiny circuits out of graphene, engineers need to find ways to create intricate patterns of graphene that are separated by a similarly thin nonconductive material. One possible solution is "white graphene," one-atom-thick sheets of boron and nitrogen that are physically similar to graphene but are electrically nonconductive.

In a new paper in the journal Nano Letters, Rice materials scientist Boris Yakobson and colleagues describe a discovery that could make it possible for nanoelectronic designers to use well-understood chemical procedures to precisely control the electronic properties of "alloys" that contain both white and black graphene.

"We found there was a direct relationship between the useful properties of the final product and the chemical conditions that exist while it is being made," Yakobson said. "If more boron is available during chemical synthesis, that leads to alloys with a certain type of geometric arrangement of atoms. The beauty of the finding is that we can precisely predict the electronic properties of the final product based solely upon the conditions -- technically speaking, the so-called 'chemical potential' -- during synthesis."

Yakobson said it took about one year for him and his students to understand exactly the distribution of energy transferred between each atom of carbon, boron and nitrogen during the formation of the "alloys." This precise level of understanding of the "bonding energies" between atoms, and how it is assigned to particular edges and interfaces, was vital to developing a direct link from synthesis to morphology and to useful product.

With interest in graphene running high, Yakobson said, the new study has garnered attention far and wide. Graduate student Yuanyue Liu, the study's lead co-author, is part of a five-student delegation that just returned from a weeklong visit to Tsinghua University in Beijing. Yakobson said the visit was part of an ongoing collaboration between Tsinghua researchers and colleagues in Rice's George R. Brown School of Engineering.


'/>"/>

Contact: Jade Boyd
jadeboyd@rice.edu
713-348-6778
Rice University
Source:Eurekalert

Related biology technology :

1. Pathogenica CSO Speaks at IBC Life Sciences Drug Discovery & Diagnostic Development Week
2. Permeon reveals discovery of Intraphilins as new approach to intracellular biologic drugs
3. A new discovery paves the way for using super strong nanostructured metals in cars
4. Discovery may overcome obstacle for quantum computing
5. New graphene discovery boosts oil exploration efforts, could enable self-powered microsensors
6. Trudeau Institute announces a discovery in the fight against sepsis
7. "Pure" Human Blood Stem-Cell Discovery Opens Door to Expanding Cells for More Clinical Use
8. Metabolic Solutions Development Company Receives $773,000 From the Alzheimers Drug Discovery Foundation to Fund Phase 2a Trial
9. David H. Murdock Research Institute Assumes Control of the Immune Tolerance Institute and Establishes a State of the Art Human Immune Monitoring Laboratory for Biomarker Discovery and Development
10. Discovery opens the door to electricity from microbes
11. Veteran Wall Street Securities Analyst Reports on Health Discovery Corporation
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/25/2016)... ... May 25, 2016 , ... Founder of ... board-certified in surgery and surgery of the hand by the National Board of ... to going above and beyond in his pursuit of providing the most comprehensive, ...
(Date:5/25/2016)... ... May 25, 2016 , ... WEDI, the nation’s leading authority ... announced that Charles W. Stellar has been named by the WEDI Board of Directors ... 2016. As an executive leader with more than 35 years of experience in healthcare, ...
(Date:5/24/2016)... Mass. (PRWEB) , ... May 24, 2016 , ... ... heart attacks, diabetes, and traumatic injuries, will be accelerated by research at Worcester ... cells into engines of wound healing and tissue regeneration. , The novel method, ...
(Date:5/24/2016)... ... May 24, 2016 , ... Media ... The new Media Cybernetics corporate branding reflects a results-driven revitalization for a company ... analysis. The re-branding components include a crisp, refreshed logo and a new web ...
Breaking Biology Technology:
(Date:3/22/2016)... 2016 According to ... for Consumer Industry by Type (Image, Motion, Pressure, ... & IT, Entertainment, Home Appliances, & Wearable ... 2022", published by MarketsandMarkets, the market for ... USD 26.76 Billion by 2022, at a ...
(Date:3/18/2016)... --> --> Competitive Landscape ... Vehicles, Physical infrastructure and Perimeter Surveillance & Detection Systems ... market and the continuing migration crisis in the ... has led visiongain to publish this unique report, which is ... & security companies in the border security market and ...
(Date:3/15/2016)... March 15, 2016 Yissum Research Development ... technology-transfer company of the Hebrew University, announced today the ... sensing technology of various human biological indicators. Neteera Technologies ... million from private investors. ... the detection of electromagnetic emissions from sweat ducts, enables ...
Breaking Biology News(10 mins):