Navigation Links
Rice University discovers that graphene oxide soaks up radioactive waste
Date:1/8/2013

Graphene oxide has a remarkable ability to quickly remove radioactive material from contaminated water, researchers at Rice University and Lomonosov Moscow State University have found.

A collaborative effort by the Rice lab of chemist James Tour and the Moscow lab of chemist Stepan Kalmykov determined that microscopic, atom-thick flakes of graphene oxide bind quickly to natural and human-made radionuclides and condense them into solids. The flakes are soluble in liquids and easily produced in bulk.

The experimental results were reported in the Royal Society of Chemistry journal Physical Chemistry Chemical Physics.

The discovery, Tour said, could be a boon in the cleanup of contaminated sites like the Fukushima nuclear plants damaged by the 2011 earthquake and tsunami. It could also cut the cost of hydraulic fracturing ("fracking") for oil and gas recovery and help reboot American mining of rare earth metals, he said.

Graphene oxide's large surface area defines its capacity to adsorb toxins, Kalmykov said. "So the high retention properties are not surprising to us," he said. "What is astonishing is the very fast kinetics of sorption, which is key."

"In the probabilistic world of chemical reactions where scarce stuff (low concentrations) infrequently bumps into something with which it can react, there is a greater likelihood that the 'magic' will happen with graphene oxide than with a big old hunk of bentonite," said Steven Winston, a former vice president of Lockheed Martin and Parsons Engineering and an expert in nuclear power and remediation who is working with the researchers. "In short, fast is good."

Determining how fast was the object of experiments by the Kalmykov group. The lab tested graphene oxide synthesized at Rice with simulated nuclear wastes containing uranium, plutonium and substances like sodium and calcium that could negatively affect their adsorption. Even so, graphene oxide proved far better than the bentonite clays and granulated activated carbon commonly used in nuclear cleanup.

Graphene oxide introduced to simulated wastes coagulated within minutes, quickly clumping the worst toxins, Kalmykov said. The process worked across a range of pH values.

"To see Stepan's amazement at how well this worked was a good confirmation," Tour said. He noted that the collaboration took root when Alexander Slesarev, a graduate student in his group, and Anna Yu. Romanchuk, a graduate student in Kalmykov's group, met at a conference several years ago.

The researchers focused on removing radioactive isotopes of the actinides and lanthanides the 30 rare earth elements in the periodic table from liquids, rather than solids or gases. "Though they don't really like water all that much, they can and do hide out there," Winston said. "From a human health and environment point of view, that's where they're least welcome."

Naturally occurring radionuclides are also unwelcome in fracking fluids that bring them to the surface in drilling operations, Tour said. "When groundwater comes out of a well and it's radioactive above a certain level, they can't put it back into the ground," he said. "It's too hot. Companies have to ship contaminated water to repository sites around the country at very large expense." The ability to quickly filter out contaminants on-site would save a great deal of money, he said.

He sees even greater potential benefits for the mining industry. Environmental requirements have "essentially shut down U.S. mining of rare earth metals, which are needed for cell phones," Tour said. "China owns the market because they're not subject to the same environmental standards. So if this technology offers the chance to revive mining here, it could be huge."

Tour said that capturing radionuclides does not make them less radioactive, just easier to handle. "Where you have huge pools of radioactive material, like at Fukushima, you add graphene oxide and get back a solid material from what were just ions in a solution," he said. "Then you can skim it off and burn it. Graphene oxide burns very rapidly and leaves a cake of radioactive material you can then reuse."

The low cost and biodegradable qualities of graphene oxide should make it appropriate for use in permeable reactive barriers, a fairly new technology for in situ groundwater remediation, he said.


'/>"/>

Contact: David Ruth
david@rice.edu
713-348-6327
Rice University
Source:Eurekalert

Related biology technology :

1. Carin Grings remains identified by researchers at Uppsala University
2. Nanonex Delivered Advanced Nanoimprint Tool NX-B200 to Swinburne University of Technology, Australia
3. University of Pennsylvania Purchases Nanonex Advanced Nanoimprint Tool NX-2600 BA
4. Eqalix Enters Sponsored Research Agreement with Temple University
5. Bed Bugs Find Their Way to University of Washington and Hastings-on-Hudson Libraries; Bed Bug Control 911 Advises Use of Bed Bug Spray to Effectively Clear the Pests Away
6. University of College London Hospitals (UCLH) Selects GEO SCAN Medical as New Standard of Care for the Detection and Treatment of Prostate Cancer
7. iLab Solutions Core Facility Management Software Named a University Business Magazine 2012 Readers’ Choice Top Product
8. Ben-Gurion University awarded $6.5 million grant to develop nano thin infrared night vision glasses
9. IntelliCell BioSciences Announces Research Agreement with the New Jersey Center for Biomaterials at Rutgers-The State University of New Jersey
10. Moscow State University Hospital Selects Ekahau RTLS to Improve Operations and Patient Safety
11. Ben-Gurion University develops side-illuminated ultra-efficient solar cell designs
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/8/2016)... , Dec. 8, 2016  Biotheranostics today ... the role of the Breast Cancer Index (BCI) ... breast cancer are most at-risk for disease recurrence ... include results from three studies advancing the understanding ... related to tumor biology and inform decisions related ...
(Date:12/8/2016)... ... December 08, 2016 , ... Opal Kelly, a leading ... interconnect using USB or PCI Express, announced the FOMD-ACV-A4, the company's first FPGA-on-Module ... small, thin, SODIMM-style module that fits a standard 204-pin SODIMM socket for low-cost ...
(Date:12/8/2016)... , ... December 08, 2016 , ... ... bioInformatics portal. In response to client demand KbioBox developed a sophisticated “3 click” ... program. Both are accessible from KBioBox’s new website, https://www.kbiobox.com/ and ...
(Date:12/8/2016)... Dec. 8, 2016  Soligenix, Inc. (OTCQB: SNGX) ... focused on developing and commercializing products to treat ... need, announced today the long-term follow-up data from ... a first-in-class Innate Defense Regulator (IDR), in the ... neck cancer patients undergoing chemoradiation therapy (CRT).  The ...
Breaking Biology Technology:
(Date:12/7/2016)... to a new market research report "Emotion Detection and Recognition Market by Technology ... End User, And Region - Global Forecast to 2021", published by MarketsandMarkets, the ... USD 36.07 Billion by 2021, at a Compound Annual Growth Rate (CAGR) of ... ... MarketsandMarkets Logo ...
(Date:12/7/2016)... 2016   Avanade is helping Williams Martini ... in history, exploit biometric data in order to critically ... the competitive edge against their rivals after their impressive, ... Avanade has worked with Williams during the 2016 season ... (heart rate, breathing rate, temperature and peak acceleration) for ...
(Date:12/6/2016)... Dec. 6, 2016  Zimmer Biomet Holdings, Inc. (NYSE and ... an offering of €500.0 million principal amount of its 1.414% ... of its 2.425% senior unsecured notes due 2026. ... on December 13, 2016, subject to the satisfaction of customary closing ... The Company intends to use ...
Breaking Biology News(10 mins):