Navigation Links
Rhythmic firing of nerve cells involved in body's movements
Date:6/8/2012

A new model for understanding how nerve cells in the brain control movement may help unlock the secrets of the motor cortex, a critical region that has long resisted scientists' efforts to understand it, researchers report June 3 in Nature.

Scientists at Washington University in St. Louis, Stanford University and Columbia University have shown that the motor cortex's effects on movement can be much more easily understood by looking at groups of motor cortex neurons instead of individual nerve cells. In the study, scientists identified rhythmic brain cell firing patterns coordinated across populations of neurons in the motor cortex. They linked those patterns to different kinds of shoulder muscle movements.

"Populations of neurons in the motor cortex oscillate in beautiful, coordinated ways," says co-first author John Cunningham, PhD, assistant professor of biomedical engineering at Washington University in St. Louis. "These patterns advance our understanding of the brain's control of movement, which is critical for understanding disorders that affect movement and for creating therapies that can restore movement."

Until now, scientists had based their studies of the motor cortex on decades-old insights into the workings of the visual cortex. In this region, orientation, brightness and other characteristics of objects in the visual field are encoded by individual nerve cells.

However, researchers could not detect a similar direct encoding of components of movement in individual nerve cells of the motor cortex.

"We just couldn't look at an arm movement and use that to reliably predict what individual neurons in the motor cortex had been doing to produce that movement," Cunningham says.

For the new study, conducted at Stanford University, scientists monitored motor cortex activity as primates reached for a target in different ways. They showed that the motor cortex generated patterns of rhythmic nerve cell impulses.

"Finding these brain rhythms surprised us a bit, as the reaches themselves were not rhythmic," says co-first author Mark Churchland, PhD, who was a postdoctoral researcher at Stanford at the time of the study and is now assistant professor of neuroscience at Columbia University. "In fact, they were decidedly arrhythmic, and yet underlying it all were these unmistakable patterns."

Cunningham compares the resulting picture of motor cortex function to an automobile engine. The engine's parts are difficult to understand in isolation but work toward a common goal, the generation of motion.

"If you saw a piston or a spark plug by itself, would you be able to explain how it makes a car move?" Cunningham asks. "Motor-cortex neurons are like that, too they are understandable only in the context of the whole."

Researchers are applying their new approach to understanding other puzzling aspects of motor cortex function.

"With this model, the seemingly complex system that is the motor cortex can now be at least partially understood in more straightforward terms," says senior author Krishna Shenoy, PhD, associate professor of electrical engineering at Stanford.


'/>"/>
Contact: Michael C. Purdy
purdym@wustl.edu
314-286-0122
Washington University School of Medicine
Source:Eurekalert

Related biology technology :

1. Rap music powers rhythmic action of medical sensor
2. When nerve meets muscle, biglycan seals the deal
3. Unzipped carbon nanotubes could help energize fuel cells and batteries, Stanford scientists say
4. Neuralstem CEO to Present at the World Stem Cells and Regenerative Medicine Congress in London
5. Aged hematopoietic stem cells rejuvenated to be functionally younger
6. New UCLA method quickly IDs nanomaterials that can cause oxidative damage to cells
7. Squid and zebrafish cells inspire camouflaging smart materials
8. X-BODY BioSciences to Present Novel Methods of Selecting for Antibodies Against Targets on Live Cells at CHIs Protein Engineering Summit
9. Study dusts sugar coating off little-known regulation in cells
10. IntelliCell BioSciences Signs Technology Licensing Agreement with Stem Cells 21 Thailand
11. Scientists Discover How a Bacterial Pathogen Breaks Down Barriers to Enter and Infect Cells
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/11/2017)... LAGUNA HILLS, Calif. , Oct. 11, 2017  SkylineDx ... London (ICR) and University of Leeds ... to risk-stratify patients with multiple myeloma (MM), in a multi-centric ... The University of Leeds is the ... UK, and ICR will perform the testing services to include ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that give it ... Nanoparticle), a technology developed in collaboration with Children’s Hospital Los Angeles (CHLA). ...
(Date:10/10/2017)... ... October 10, 2017 , ... USDM Life ... for the life sciences and healthcare industries, announces a presentation by Subbu Viswanathan ... The presentation, “Automating GxP Validation for Agile Cloud Platforms,” will present a revolutionary ...
(Date:10/9/2017)... ... October 09, 2017 , ... The Giving Tree Wellness Center ... the needs of consumers who are incorporating medical marijuana into their wellness and ... , As operators of two successful Valley dispensaries, The Giving Tree’s two founders, ...
Breaking Biology Technology:
(Date:4/11/2017)... 2017 No two people are believed ... New York University Tandon School of Engineering and ... that partial similarities between prints are common enough ... phones and other electronic devices can be more ... lies in the fact that fingerprint-based authentication systems ...
(Date:4/5/2017)...  The Allen Institute for Cell Science today announces ... portal and dynamic digital window into the human cell. ... application of deep learning to create predictive models of ... a growing suite of powerful tools. The Allen Cell ... publicly available resources created and shared by the Allen ...
(Date:4/4/2017)... --  EyeLock LLC , a leader of iris-based identity ... and Trademark Office (USPTO) has issued U.S. Patent No. ... iris image with a face image acquired in sequence ... th issued patent. "The issuance ... multi-modal biometric capabilities that have recently come to market ...
Breaking Biology News(10 mins):