Navigation Links
Researchers show how to 'stamp' nanodevices with rubber molds
Date:10/22/2008

By manipulating the way tiny droplets of fluid dry, Cornell researchers have created an innovative way to make and pattern nanoscale wires and other devices that ordinarily can be made only with expensive lithographic tools. The process is guided by molds that "stamp" the desired structures.

"You can in principle build almost any types of architectures you want at nanoscale," reported Dan Luo, Cornell associate professor of biological and environmental engineering, postdoctoral researcher Wenlong Cheng and colleagues. Their work is described in the online edition of the journal Nature Nanotechnology and in the October 2008 print issue.

To demonstrate the process, the researchers assembled gold nanoparticles into nanoscale wires, disks, squares, triangles and "corrals" (spaces enclosed by nanowires), and demonstrated that their nanowires could be connected to microfabricated electrodes, and through them to other circuitry. In addition to metal nanoparticles, the process could be applied to quantum dots, magnetic spheres and other nanoparticles, they said. They also assembled arrays of single salt crystals, suggesting that any material capable of crystallization could be manipulated by the process.

They began with gold nanoparticles about 12 nanometers in diameter suspended in water. To suspend metal particles in water, the researchers coated them with a "ligand" that adheres to the metal and to water. A second innovation in the Cornell process is to use single chains of synthetic DNA as the ligand. The DNA molecules extend out from the particles like hairs and, as the water evaporates, entangle the particles with one another. Adjusting the DNA lengths can precisely control the distance between the particles to make them assemble into orderly arrays called superlattices, rather than clumping together at random. Metal superlattices have applications in computer memory and photonics and have unique properties in electronic circuits.

The next step is to press down a silicone rubber mold onto a thin layer of the solution on a silicon substrate. Microscopic holes and channels in the underside of the mold effectively "stamp" the desired shapes on the fluid. As they dry, droplets shrink to create wires and other shapes measured in nanometers from a mold measured in microns. This means, the researchers say, that nanoscale superlattice features -- currently possible only with expensive, specialized equipment -- can be made in an inexpensive way.


'/>"/>

Contact: Blaine Friedlander
bpf2@cornell.edu
607-254-8093
Cornell University Communications
Source:Eurekalert

Related biology technology :

1. Researchers improve ability to write and store information on electronic devices
2. Long-awaited international ethical guidelines for biobank researchers
3. CU researchers shed light on light-emitting nanodevice
4. Stevens researchers provide new information about mass spectrometry
5. Researchers measure carbon nanotube interaction
6. Researchers underscore limitations of genetic ancestry tests
7. ASU researchers improve memory devices using nanotech
8. UD researchers race ahead with latest spintronics achievement
9. Researchers outline structure of largest nonvirus particle ever crystallized
10. Ames Laboratory researchers solve fuel-cell membrane structure conundrum
11. Researchers use magnetism to target cells to animal arteries
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/24/2016)... 24, 2016  Regular discussions on a range of subjects ... the two entities said Poloz. Speaking at a ... , he pointed to the country,s inflation target, which ... "In certain areas ... have common economic goals, why not sit down and address ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... release of its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering ... retention in this eBook by providing practical tips, tools, and strategies for clinical ...
(Date:6/23/2016)... Md. , June 23, 2016 A person ... from the crime scene to track the criminal down. ... the U.S. Food and Drug Administration (FDA) uses DNA evidence ... Sound far-fetched? It,s not. The FDA ... sequencing to support investigations of foodborne illnesses. Put as simply ...
(Date:6/23/2016)... NEW YORK , June, 23, 2016  The ... students to envision new ways to harness living systems ... of Modern Art (MoMA) in New York ... more than 130 participating students, showcased projects at MoMA,s ... included Paola Antonelli , MoMA,s senior curator of ...
Breaking Biology Technology:
(Date:5/16/2016)... NEW YORK , May 16, 2016   ... authentication solutions, today announced the opening of an IoT ... to strengthen and expand the development of embedded ... provides an unprecedented level of convenience and security with ... to authenticate one,s identity aside from DNA. EyeLock,s platform ...
(Date:5/9/2016)... 2016 Elevay is currently known ... freedom for high net worth professionals seeking travel for ... connected world, there is still no substitute for a ... sealing your deal with a firm handshake. This is ... advantage of citizenship via investment programs like those offered ...
(Date:4/28/2016)... FRANCISCO and BANGALORE, India , ... of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... provider, today announced a global partnership that will ... way to use mobile banking and payment services. ... is a key innovation area for financial services, but it ...
Breaking Biology News(10 mins):