Navigation Links
Researchers reveal why some pain drugs become less effective over time
Date:4/3/2012

MONTREAL, April 3, 2012 Researchers at the University of Montreal's Sainte-Justine Hospital have identified how neural cells like those in our bodies are able to build up resistance to opioid pain drugs within hours. Humans have known about the usefulness of opioids, which are often harvested from poppy plants, for centuries, but we have very little insight into how they lose their effectiveness in the hours, days and weeks following the first dose. "Our study revealed cellular and molecular mechanisms within our bodies that enables us to develop resistance to this medication, or what scientists call drug tolerance," lead author Dr. Graciela Pineyro explained. "A better understanding of these mechanisms will enable us to design drugs that avoid tolerance and produce longer therapeutic responses."

The research team looked at how drug molecules would interact with molecules called "receptors" that exist in every cell in our body. Receptors, as the name would suggest, receive "signals" from the chemicals that they come into contact with, and the signals then cause the various cells to react in different ways. They sit on the cell wall, and wait for corresponding chemicals known as receptor ligands to interact with them. "Until now, scientists have believed that ligands acted as 'on- off' switches for these receptors, all of them producing the same kind of effect with variations in the magnitude of the response they elicit," Pineyro explained. "We now know that drugs that activate the same receptor do not always produce the same kind of effects in the body, as receptors do not always recognize drugs in the same way. Receptors will configure different drugs into specific signals that will have different effects on the body."

Pineyro is attempting to tease the "painkilling" function of opioids from the part that triggers mechanisms that enable tolerance to build up. "My laboratory and my work are mostly structured around rational drug design, and trying to define how drugs produce their desired and non desired effects, so as to avoid the second, Pineyro said. "If we can understand the chemical mechanisms by which drugs produce therapeutic and undesired side effects, we will be able to design better drugs."

Once activated by a drug, receptors move from the surface of the cell to its interior, and once they have completed this 'journey', they can either be destroyed or return to the surface and used again through a process known as "receptor recycling." By comparing two types of opioids DPDPE and SNC-80 the researchers found that the ligands that encouraged recycling produced less analgesic tolerance than those that didn't. "We propose that the development of opioid ligands that favour recycling could be away of producing longer-acting opioid analgesics," Pineyro said.


'/>"/>

Contact: William Raillant-Clark
w.raillant-clark@umontreal.ca
514-343-7593
University of Montreal
Source:Eurekalert

Related biology technology :

1. Researchers Identify New Regulator in Allergic Diseases
2. CNIO researchers take part in the most comprehensive personalized medicine study performed to date
3. Researchers develop graphene supercapacitor holding promise for portable electronics
4. Researchers capture first-ever images of atoms moving in a molecule
5. Penn researchers build first physical metatronic circuit
6. Pitt researchers coax gold into nanowires
7. York researchers create tornados inside electron microscopes
8. Self-assembling nanorods: Berkeley Lab researchers obtain 1-, 2- and 3-D nanorod arrays and networks
9. Navy researchers investigate small-scale autonomous planetary explorers
10. Notre Dame researchers develop paint-on solar cells
11. Quantum computing has applications in magnetic imaging, say Pitt researchers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/19/2017)... ... January 18, 2017 , ... LabRoots , the leading ... the world, was today awarded the "Best Science & Technology Social Networking Service ... and decided upon by a dedicated team of researchers and analysts. , The ...
(Date:1/19/2017)... Jan. 18, 2017 The global biotechnology ... 92.9 billion by 2025, according to a new ... has been adaptive of the function of outsourcing ... 2002. Among the services outsourced, clinical trial management ... Johnson & Johnson was the first pharmaceutical company ...
(Date:1/19/2017)... , Jan. 18, 2017 BD (Becton, Dickinson and ... announced today that it will host a live webcast of its ... p.m. (ET). The webcast can be accessed from ... for replay through Tuesday, January 31, 2017. ... About BD BD is a ...
(Date:1/18/2017)... , Jan. 18, 2017   Boston Biomedical ... compounds designed to target cancer stemness pathways, will feature ... compound, napabucasin, at the 2017 ASCO Gastrointestinal Cancers Symposium, ... . Napabucasin is an orally-administered ... targeting STAT3. i Cancer stem cells (CSCs) possess ...
Breaking Biology Technology:
(Date:12/15/2016)...   WaferGen Bio-systems, Inc. (NASDAQ: ... today that on December 13, 2016, it received a ... Stock Market LLC which acknowledged that, as of December ... stock had been at $1.00 or greater for ten ... Listing Rule 5550(a)(2) of the Nasdaq Stock Market. ...
(Date:12/15/2016)... -- "Increase in mobile transactions is driving the growth ... is expected to grow from USD 4.03 billion in ... CAGR of 29.3% between 2016 and 2022. The market ... for smart devices, government initiatives, and increasing penetration of ... expected to grow at a high rate during the ...
(Date:12/7/2016)... -- According to a new market research report "Emotion Detection and ... Recognition), Service, Application Area, End User, And Region - Global Forecast to 2021", ... Billion in 2016 to USD 36.07 Billion by 2021, at a Compound Annual ... ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):