Navigation Links
Researchers produce nanostructures with potential to advance energy devices
Date:9/5/2013

TEMPE. Ariz. -- New types of nanostructures have shown promise for applications in electrochemically powered energy devices and systems, including advanced battery technologies.

One process for making these nanostructures is dealloying, in which one or more elemental components of an alloy are selectively leached out of materials.

Arizona State University researchers Karl Sieradzki and Qing Chen have been experimenting with dealloying lithium-tin alloys, and seeing the potential for the nanostructures they are producing to spark advances in lithium-ion batteries, as well as in expanding the range of methods for creating new nanoporous materials using the dealloying process.

Their research results are detailed in a paper they co-authored that was recently published on the website of the prominent science and engineering journal Nature Materials (Advance online publication).

Read the article abstract at: http://www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat3741.html

Sieradzki is a materials scientist and professor in the School for Engineering of Matter, Transport and Energy, one of ASU's Ira A. Fulton Schools of Engineering.

Chen earned his doctoral degree in materials science at ASU last spring and is now a postdoctoral research assistant.

Nanoporous materials made by dealloying are comprised of nanometer-scale zigzag holes and metal. These structures have found application in catalysis (used to increase the rate of chemical reactions) as well as actuation (used to mechanically move or control various mechanisms or systems) and supercapacitors (which provide a large amount of high electrical capacity in small devices).

They could also improve the performance of electrochemical sensing technology and provide more resilient radiation damage-resistant materials.

The nanostructures that Sieradzki and Chen have produced by dealloying lithium-tin alloys allows for more efficient transport and storage of the electric charge associated with lithium, while the small size prevents fracture of the tin reservoir that serves as a storage medium for lithium.

Lithium-ion batteries are one of the leading types of rechargeable batteries. They are widely used in consumer products, particularly portable electronics, and are being increasingly used in electric vehicles and aerospace technologies.

Sieradzki and Chen say that with more research and development the porous nanostructures produced by dealloying lithium alloys could provide a lithium-ion battery with improved energy-storage capacity and a faster charge and discharge enabling it to work more rapidly.

One major advantage is that the porous nanostructures providing this electrochemical power boost can evolve spontaneously during tunable dealloying processing conditions. This, Sieradzki explains, opens up possibilities for developing new nanomaterials that could have a multitude of technological applications.

"There are a lot of metals that scientists and engineers have not be able to make nanoporous," he says. "But it turns out that with lithium you can lithiate and de-lithiate a lot of materials, and do it easily at room temperature. So this could really broaden the spectrum for what's possible in making new nanoporous materials by dealloying."


'/>"/>

Contact: Joe Kullman
joe.kullman@asu.edu
480-965-8122
Arizona State University
Source:Eurekalert

Related biology technology :

1. Researchers discover breakthrough technique that could make electronics smaller and better
2. GridGain Enables Portland State Univ. Researchers to Push Boundaries of Science
3. Reproducing natures chemistry: Researchers alter molecular properties in a new way
4. IntelLiDrives XYZ Robot Helps Researchers to Develop Weather-resistant Crops
5. Researchers figure out how to grow carbon nanotubes with specific atomic structures
6. Opertech Bio Researchers Develop Method For High-Throughput Taste Evaluation
7. Sarcoma Alliance Announces Tissue Bank to Help Researchers
8. BioInformatics LLC—New Report Finds High Degree of Satisfaction With Instrumentation Performance Among Researchers
9. York Nanocentre researchers image individual atoms in a living catalytic reaction
10. Medrio, a Leading EDC Provider for Clinical Research, Announces Its Latest Version, 8.1 with iPad Support, is Available Without Charge for Academic Researchers
11. Researchers strike gold with nanotech vaccine
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:9/20/2017)... ... September 20, 2017 , ... ... study examining the effects of exoskeleton-assisted walking on gait parameters and neuromuscular ... article, "Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session" (doi:10.1080.10790268.2017.1314900) ...
(Date:9/19/2017)... ... 2017 , ... Participants of this educational webinar will learn ... with the advantages and disadvantages of ductless, filtered fume hoods, they will also ... , Attendees will learn from an industry expert about the different types of ...
(Date:9/19/2017)... , Sept. 19, 2017 ValGenesis Inc., the ... is pleased to announce the strategic partnership with VTI ... clients with validation services using the latest technology available ... will provide clients with efficient and cost-effective validation services ... partner for the ValGenesis VLMS system. ...
(Date:9/18/2017)... ... 18, 2017 , ... Transportable biomass conversion facilities and the ... is the topic of a September 27 webinar hosted by the ... transportable biomass conversion facilities for producing biochar, briquettes, and torrefied wood, biomass supply ...
Breaking Biology Technology:
(Date:4/5/2017)... , April 5, 2017  The Allen Institute for ... Cell Explorer: a one-of-a-kind portal and dynamic digital window ... imaging data, the first application of deep learning to ... stem cell lines and a growing suite of powerful ... for these and future publicly available resources created and ...
(Date:4/4/2017)... , April 4, 2017   EyeLock LLC , ... that the United States Patent and Trademark Office (USPTO) ... covers the linking of an iris image with a ... and represents the company,s 45 th issued patent. ... is very timely given the multi-modal biometric capabilities that ...
(Date:3/30/2017)... The research team of The Hong Kong ... identification by adopting ground breaking 3D fingerprint minutiae recovery and matching ... and accuracy for use in identification, crime investigation, immigration control, security ... ... A research team led by ...
Breaking Biology News(10 mins):