Navigation Links
Researchers measure carbon nanotube interaction

LIVERMORE, Calif. Carbon nanotubes have been employed for a variety of uses including composite materials, biosensors, nano-electronic circuits and membranes.

While they have proven useful for these purposes, no one really knows much about whats going on at the molecular level. For example, how do nanotubes and chemical functional groups interact with each other on the atomic scale" Answering this question could lead to improvements in future nano devices.

In a quest to find the answer, researchers for the first time have been able to measure a specific interaction for a single functional group with carbon nanotubes using chemical force microscopy a nanoscale technique that measures interaction forces using tiny spring-like sensors. Functional groups are the smallest specific group of atoms within a molecule that determine the characteristic chemical reactions of that molecule.

A recent report by a team of Lawrence Livermore National Laboratory researchers and colleagues found that the interaction strength does not follow conventional trends of increasing polarity or repelling water. Instead, it depends on the intricate electronic interactions between the nanotube and the functional group.

This work pushes chemical force microscopy into a new territory, said Aleksandr Noy, lead author of the paper that appears in the Oct. 14 online issue of the journal, Nature Nanotechnology.

Understanding the interactions between carbon nanotubes (CNTs) and individual chemical functional groups is necessary for the engineering of future generations of sensors and nano devices that will rely on single-molecule coupling between components. Carbon nanotubes are extremely small, which makes it particularly difficult to measure the adhesion force of an individual molecule at the carbon nanotube surface. In the past, researchers had to rely on modeling, indirect measurements and large microscale tests.

But the Livermore team went a step further and smaller to get a more exact measurement. The scientists were able to achieve a true single function group interaction by reducing the probe-nanotube contact area to about 1.3 nanometers (one million nanometers equals one millimeter).

Adhesion force graphs showed that the interaction forces vary significantly from one functionality to the next. To understand these measurements, researchers collaborated with a team of computational chemists who performed ab initio simulations of the interactions of functional groups with the sidewall of a zig-zag carbon nanotube. Calculations showed that there was a strong dependence of the interaction strength on the electronic structure of the interacting molecule/CNT system. To the researchers delight, the calculated interaction forces provided an exact match to the experimental results.

This is the first time we were able to make a direct comparison between an experimental measurement of an interaction and an ab initio calculation for a real-world materials system, Noy said. In the past, there has always been a gap between what we could measure in an experiment and what the computational methods could do. It is exciting to be able to bridge that gap.

This research opens up a new capability for nanoscale materials science. The ability to measure interactions on a single functional group level could eliminate much of the guess work that goes into the design of new nanocomposite materials, nanosensors, or molecular assemblies, which in turn could help in building better and stronger materials, and more sensitive devices and sensors in the future.


Contact: Anne Stark
DOE/Lawrence Livermore National Laboratory

Related biology technology :

1. Tapping hidden assets: Wisconsin researchers who can create jobs
2. National Academies induct five UW researchers
3. Wisconsin researchers defend stem cell company
4. NimbleGen partners with leading researchers
5. Medical College researchers win federal grants
6. Researchers say scientific reporting needs more perspective, less hype
7. Congress passes bill to ease researchers collaboration worries
8. Researchers report development of embryonic stem cells without destroying embryo
9. New digs for UW AIDS researchers
10. Medical College researchers receive new grants to enhance discovery of heart-protecting anesthetics
11. Cloning ban too broad, stem-cell researchers argue
Post Your Comments:
(Date:11/25/2015)... Nov. 25, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ: ... business and prospects remain fundamentally strong and highlights ... doxorubicin) recently received DSMB recommendation to continue the ... review of the final interim efficacy and safety ... Endpoint in men with heavily pretreated castration- and ...
(Date:11/25/2015)... ... November 25, 2015 , ... Jessica Richman and ... early in their initial angel funding process. Now, they are paying it forward ... make early stage investments in the microbiome space. In this, they join ...
(Date:11/24/2015)... 24, 2015 Halozyme Therapeutics, Inc. (NASDAQ: HALO ) ... New York on Wednesday, December 2 at 9:30 ... president and CEO, will provide a corporate overview. th ... at 1:00 p.m. ET/10:00 a.m. PT . Jim ... provide a corporate overview. --> th Annual Oppenheimer ...
(Date:11/24/2015)... QUEBEC CITY , Nov. 24, 2015 /PRNewswire/ - ... the request of IIROC on behalf of the Toronto ... this news release there are no corporate developments that ... price. --> --> ... --> . --> Aeterna Zentaris ...
Breaking Biology Technology:
(Date:10/29/2015)... Va. , Oct. 29, 2015 Daon, ... today that it has released a new version of ... customers in North America have ... IdentityX v4.0 also includes a FIDO UAF certified ... are already preparing to activate FIDO features. These customers ...
(Date:10/27/2015)... 27, 2015 In the present market scenario, ... for various industry verticals such as banking, healthcare, defense, ... growing demand for secure & simplified access control and ... as hacking of bank accounts, misuse of users, , ... as PC,s, laptops, and smartphones are expected to provide ...
(Date:10/26/2015)... -- Delta ID Inc., a company focused on bringing secure ... announced its ActiveIRIS® technology powers the iris recognition feature ... NTT DOCOMO, INC in Japan . ... include iris recognition technology, after a very successful introduction ... 2015, world,s first smartphone to have this capability. ...
Breaking Biology News(10 mins):