Navigation Links
Researchers get a grip on nervous system's receptors

A digital signal processing technique long used by statisticians to analyze data is helping Houston scientists understand the roots of memory and learning, Alzheimer's and Parkinson's diseases and stroke.

Researchers at Rice University and the University of Texas Health Science Center at Houston (UTHealth) reported today in the journal Nature Chemical Biology that single molecule fluorescence resonance energy transfer (FRET) techniques combined with wavelet transforms have given them a new view of the AMPA receptor, a glutamate receptor and a primary mediator of fast signal transmission in the central nervous system.

Scientists have long thought these receptor proteins, which bind to glutamate to activate the flow of ions through the nervous system, are more than simple "on-off" switches. A "cleft" in the AMPA protein that looks and acts like a C-clamp and that binds the neurotransmitter glutamate may, in reality, serve functions at positions between fully open (off) and fully closed (on).

"In the old days, the binding was thought to be like a Venus flytrap," said Christy Landes, a Norman Hackerman-Welch Young Investigator Assistant Professor of Chemistry at Rice and lead author of the new paper. "The trap sat there waiting for something to come into the cleft. A neurotransmitter would come in and -- oops! -- it snapped shut on the molecule it was binding to, the gate opened up and ions would flow. We have all sorts of high-quality X-ray crystallography studies to show us what the snapped-open and snapped-shut cleft looks like."

But X-ray images likely show the protein in its most stable -- not necessarily its most active -- conformation, she said. Spectroscopy also has its limits: If half the proteins in an assay are open and half are shut, the measured average is 50 percent, a useless representation of what's really going on.

The truth, Landes said, is that the clefts of AMPA receptors are constantly opening and closing, exploring their space for neurotransmitters. "We know these proteins are super dynamic whether glutamate is present or not," she said. "And we need to look at one protein at a time to avoid averaging."

But seeing single protein molecules go through the motions is well beyond the capability of standard optical tools. That led the researchers to employ a unique combination of technologies. Vasanthi Jayaraman, an associate professor in UTHealth's Department of Biochemistry and Molecular Biology who studies chemical signaling, started the process when she used the binding domain of the AMPA receptor and attached fluorescent dyes to the points of the cleft in a way that would not affect their natural function.

Single-molecule FRET allowed Landes and her team to detect the photons emitted by the dyes. "These experiments had to be done in a box inside a box inside a box in a dark room," she said. "In a short period of measurement, we might be counting 10 photons."

The trick, she said, was to excite only one dye, which would in turn activate the other. "The amount of light that comes out of the dyes has a direct relationship to the distance between the dyes," Landes said. "You excite one, you measure both, and the relative amount of light that comes out of the one you're not exciting depends on how close they are."

Detecting very small changes in the distance between the two points over a period of time required calculations involving wavelets, a tool Rice mathematicians helped develop in the '70s and '80s. (Another recent paper by Landes and Taylor on their wavelet optimization method appears here.)

Wavelets allowed the researchers to increase the resolution of FRET results by reducing shot noise -- distortion at a particular frequency -- from the data. It also allowed them to limit measurements to a distinct time span -- say, 100 milliseconds -- during which the AMPA receptor would explore a range of conformations. They identified four distinct conformations in an AMPA receptor bound to a GluA2 agonist (which triggers the receptor response). Other experiments that involved agonist-free AMPA or AMPA bound to mutated glutamate showed an even floppier receptor.

Knowing how cleft positions match up with the function is valuable, said Jayaraman, who hopes to extend the technique to other signaling proteins with the ultimate goal of designing drugs to manipulate proteins implicated in neurological diseases.

"It was a beautiful combination," she said of the experiments. "We had done a lot of work on this protein and figured out the basic things. What was lacking was this one critical aspect. Being able to collaborate with a physical chemist (Landes) who had the tools allowed us to get details about this protein we wouldn't have seen otherwise."

"Physical chemistry, for all of its existence, amounts to coming up with new tricks to be able to calculate things that nature would not have us calculate," Landes said. "I think our true contribution is to be able to analyze this noisy data to get to what's underneath."


Contact: David Ruth
Rice University

Related biology technology :

1. Researchers at Harvard and MITRE produce worlds first programmable nanoprocessor
2. Size of airborne flu virus impacts risk, Virginia Tech researchers say
3. What a ride! Researchers take molecules for a spin
4. Practice Fusion Invites Health Researchers to Analyze This! Contest on Windows Azure
5. Columbia University researchers use nanoscale transistors to study single-molecule interactions
6. Researchers visualize herpes virus tactical maneuver
7. Thomson Reuters and ChemAxon Partner to Help Speed Drug Discovery for Life Science Researchers
8. Strange new twist: Berkeley researchers discover Möbius symmetry in metamaterials
9. Rice researchers take molecules temperature
10. Researchers create new high-performance fiber
11. Dutch royal honors for Manchester researchers
Post Your Comments:
(Date:11/26/2015)... MUMBAI , November 26, 2015 ... --> Accutest Research ... accredited Contract Research Organization (CRO), has ... Chase Cancer Center - Temple Health ... ,     (Photo: ) ...
(Date:11/25/2015)... 25, 2015 2 nouvelles études permettent ... les différences entre les souches bactériennes retrouvées dans la ... des êtres humains . Ces recherches  ouvrent une nouvelle ... prise en charge efficace de l,un des problèmes ... chats .    --> 2 nouvelles études ...
(Date:11/25/2015)... /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS; TSX: AEZ) ... remain fundamentally strong and highlights the following developments: ... DSMB recommendation to continue the ZoptEC Phase 3 ... final interim efficacy and safety data , ... with heavily pretreated castration- and Taxane-resistant prostate cancer ...
(Date:11/25/2015)... San Francisco, CA (PRWEB) , ... November 25, ... ... leading microbial genomics company uBiome, were featured on AngelList early in their initial ... by launching an AngelList syndicate for individuals looking to make early stage investments ...
Breaking Biology Technology:
(Date:11/18/2015)... , November 18, 2015 ... published a new market report titled  Gesture Recognition Market ... Forecast, 2015 - 2021. According to the report, the global gesture ... is anticipated to reach US$29.1 bn by 2021, at ... North America dominated the global ...
(Date:11/16/2015)... JOSE, Calif. , Nov 16, 2015 /PRNewswire/ ... developer of human interface solutions, today announced expansion ... Synaptics TouchView ™ touch controller and display ... architectural revolution of smartphones. These new TDDI products ... include TD4100 (HD resolution), TD4302 (WQHD resolution), and ...
(Date:11/10/2015)... LONDON , Nov. 10, 2015 /PRNewswire/ ... segmented on the basis of product, type, ... segments included in this report are consumables, ... this report are safety biomarkers, efficacy biomarkers, ... in this report are diagnostics development, drug ...
Breaking Biology News(10 mins):