Navigation Links
Researchers gain detailed insight into failing heart cells using new nano technique
Date:2/25/2010

Researchers have been able to see how heart failure affects the surface of an individual heart muscle cell in minute detail, using a new nanoscale scanning technique developed at Imperial College London. The findings may lead to better design of beta-blockers, the drugs that can slow the development of heart failure, and to improvements in current therapeutic approaches to treating heart failure and abnormal heart rhythms.

Heart failure is a progressive and serious condition in which the heart is unable to supply adequate blood flow to meet the body's needs. Hormones such as adrenaline, which are activated by the body in an attempt to stimulate the weak heart, eventually produce further damage and deterioration. Symptoms include shortness of breath, difficulty in exercising and swollen feet.

In the new study, published today in the journal Science and funded by the Wellcome Trust and the Leducq Foundation, researchers were able to analyse individual regions on the surface of the heart muscle cell in unprecedented detail, using live nanoscale microscopy.

They used a new technique called scanning ion conductance microscopy (SICM), which gives an image of the surface of the cardiac muscle cell at more detailed levels than those possible using conventional live microscopy. This enabled the researchers to see fine structures such as minute tubes (t-tubules), which carry electrical signals deep into the core of the cell. They could also see that the muscle cell surface is badly disrupted in heart failure.

There are two types of receptors for adrenaline. The first, beta1AR, strongly stimulates the heart to contract and it can also induce cell damage in the long term. The second, beta2AR, can slightly stimulate contraction but it also has special protective properties. For today's study, the researchers combined SICM with new chemical probes which give fluorescent signals when beta1AR or beta2AR is activated.

They found that the beta2AR receptors are normally anchored in the t-tubules, but in those cells damaged by heart failure they change location and move into the same space as beta1AR receptors. The researchers believe that this altered distribution of receptors might affect the beta2AR receptors' ability to protect cells, and lead to more rapid degeneration of the failing heart.

One of the most important categories of drugs for slowing the development of heart failure are the beta-blockers, which prevent adrenaline from affecting the heart cells by targeting the beta receptors. The new finding increases understanding of what happens to the two receptors in heart failure and could lead to the design of improved beta-blockers. It may eventually help resolve an existing debate about whether it is better to block the beta2AR receptors as well as the beta1AR.

Dr Julia Gorelik, corresponding author of the study from the National Heart and Lung Institute at Imperial College London, said: "Our new technique means we can get a real insight into how individual cells are disrupted by heart failure. Using our new nanoscale live-cell microscopy we can scan the surface of heart muscle cells to much greater accuracy than has been possible before and to see tiny structures that affect how the cells function.

"Through understanding what's happening on this tiny scale, we can ultimately build up a really detailed picture of what's happening to the heart during heart failure and long term, this should help us to tackle the disease. The main question for our future research will be to understand whether drugs can prevent the beta2-AR from moving in the cell and how this might help us to fight heart failure," added Dr Gorelik.

For the study, the researchers looked at single living cardiac muscle cells in a culture dish, taken from healthy or failing rat hearts. They stimulated the beta1AR and beta2AR receptors using drugs applied via nanopipette inside the t-tubules on the heart muscle cell.


'/>"/>

Contact: Laura Gallagher
l.gallagher@imperial.ac.uk
44-020-759-48432
Imperial College London
Source:Eurekalert

Related biology technology :

1. Researchers improve ability to write and store information on electronic devices
2. Long-awaited international ethical guidelines for biobank researchers
3. CU researchers shed light on light-emitting nanodevice
4. Stevens researchers provide new information about mass spectrometry
5. Researchers measure carbon nanotube interaction
6. Researchers underscore limitations of genetic ancestry tests
7. ASU researchers improve memory devices using nanotech
8. UD researchers race ahead with latest spintronics achievement
9. Researchers outline structure of largest nonvirus particle ever crystallized
10. Ames Laboratory researchers solve fuel-cell membrane structure conundrum
11. Researchers use magnetism to target cells to animal arteries
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2016)... HOUSTON , June 23, 2016 ... agreement with the Cy-Fair Sports Association to serve ... of the agreement, Houston Methodist Willowbrook will provide ... education and connectivity with association coaches, volunteers, athletes ... partner with the Cy-Fair Sports Association and to ...
(Date:6/23/2016)... 23, 2016  The Biodesign Challenge (BDC), a university ... to harness living systems and biotechnology, announced its winning ... New York City . ... showcased projects at MoMA,s Celeste Bartos Theater during the ... MoMA,s senior curator of architecture and design, and ...
(Date:6/23/2016)... ... 23, 2016 , ... STACS DNA Inc., the sample tracking software company, today ... Laboratory, has joined STACS DNA as a Field Application Specialist. , “I am ... and COO of STACS DNA. “In further expanding our capacity as a scientific integrator, ...
(Date:6/23/2016)... , June 23, 2016  Blueprint Bio, a company ... to the medical community, has closed its Series A ... Nunez . "We have received a commitment ... capital we need to meet our current goals," stated ... us the runway to complete validation on the current ...
Breaking Biology Technology:
(Date:5/3/2016)... 2016  Neurotechnology, a provider of high-precision biometric ... Biometric Identification System (ABIS) , a complete system ... ABIS can process multiple complex biometric transactions with ... fingerprint, face or iris biometrics. It leverages the ... MegaMatcher Accelerator , which have been used ...
(Date:4/28/2016)... April 28, 2016 First quarter 2016:   ... 966% compared with the first quarter of 2015 The ... 589.1 M (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) ... guidance is unchanged, SEK 7,000-8,500 M. The operating margin ...
(Date:4/26/2016)... Research and Markets has announced ... 2016-2020"  report to their offering.  , ,     (Logo: ... analysts forecast the global multimodal biometrics market to ... period 2016-2020.  Multimodal biometrics is being ... the healthcare, BFSI, transportation, automotive, and government for ...
Breaking Biology News(10 mins):