Navigation Links
Researchers find 'Goldilocks' of DNA self-assembly
Date:10/28/2010

Researchers from North Carolina State University have found a way to optimize the development of DNA self-assembling materials, which hold promise for technologies ranging from drug delivery to molecular sensors. The key to the advance is the discovery of the "Goldilocks" length for DNA strands used in self-assembly not too long, not too short, but just right.

DNA strands contain genetic coding that will form bonds with another strand that contains a unique sequence of complementary genes. By coating a material with a specific DNA layer, that material will then seek out and bond with its complementary counterpart. This concept, known as DNA-assisted self-assembly, creates significant opportunities in the biomedical and materials science fields, because it may allow the creation of self-assembling materials with a variety of applications.

But, while DNA self-assembly technology is not a new concept, it has historically faced some significant stumbling blocks. One of these obstacles has been that DNA segments that are too short often failed to self-assemble, while segments that are too long often led to the creation of deformed materials. This hurdle can lead to basic manufacturing problems, as well as significant changes in the properties of the material itself.

A team of researchers from NC State and the University of Melbourne have proposed a solution to this problem, using computer simulations of DNA strands to identify the optimal length of a DNA strand for self-assembly and explaining the scientific principles behind it.

"Strands that are too short or long form self-protected motifs," says Dr. Yara Yingling, an assistant professor of materials science and engineering at NC State and co-author of a paper describing the research. That means that the strands bond to each other, rather than to "partner" materials.

"The optimal lengths are not long enough to intertwine with each other, and are not short enough to fold over on themselves," Yingling explains. That leaves them exposed, and available to bond with the materials in another layer the perfect situation for DNA self-assembly.

One potential application for such self-assembling materials is the development of drug-delivery vehicles. For example, researchers at the University of Melbourne have created self-assembling DNA capsules that are fully biocompatible, biodegradable and capable of releasing the drug when they come in contact with a specific physical stimulus making them ideal for drug delivery.

DNA self-assembly technology is also expected to facilitate the creation of molecular sensors that use DNA to detect, and signal the presence of, clinically important biological molecules which could have significant diagnostic applications in the medical field.

"We're now planning to explore additional factors that play a role in DNA self-assembly," Yingling says, "including temperature, genetic sequence and the environment in which the assembly takes place."


'/>"/>

Contact: Matt Shipman
matt_shipman@ncsu.edu
919-515-6386
North Carolina State University
Source:Eurekalert  

Related biology technology :

1. Plague researchers race to beat bioterrorists
2. Microsoft Research Makes Microsoft Biology Foundation and MODISAzure-Based Environmental Service Available to Scientists and Researchers
3. Plague researchers race to beat bioterrorists
4. Researchers sequence genome of mosquito that spreads West Nile virus
5. Elsevier Survey Reveals Researchers Ready to Push Scientific Search and Discovery to the Next Level
6. Researchers discover less expensive low-temperature catalyst for hydrogen purification
7. Researchers expand yeasts sugary diet to include plant fiber
8. NIST researchers hear puzzling new physics from graphene quartets quantum harmonies
9. Virginia Tech researchers contribute to turkey genome sequencing
10. Researchers create new class of piezoelectric logic devices using zinc oxide nanowires
11. Researchers stretch a lackluster material into a possible electronics revolution
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers find 'Goldilocks' of DNA self-assembly
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced ... this eBook by providing practical tips, tools, and strategies for clinical researchers. , ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT ... Ontario biotechnology company, Propellon Therapeutics ... development and commercialization of a portfolio of first-in-class ... Epigenetic targets such as WDR5 represent an exciting ... significantly in precision medicine for cancer patients. Substantial ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. is pleased ... received AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of ... Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform ...
Breaking Biology Technology:
(Date:6/9/2016)... , June 9, 2016  Perkotek an innovation leader in attendance control systems ... seamlessly log work hours, for employers to make sure the right employees are actually ... http://photos.prnewswire.com/prnh/20160609/377486LOGO ... ... ...
(Date:6/3/2016)... LONDON , June 3, 2016 /PRNewswire/ ... Transport Management) von Nepal ... ,Angebot und Lieferung hochsicherer geprägter Kennzeichen, einschließlich ... weltweit führend in der Produktion und Implementierung ... an der Ausschreibung im Januar teilgenommen, aber ...
(Date:6/2/2016)... 2016 Perimeter Surveillance & Detection ... Physical Infrastructure, Support & Other Service  The ... offers comprehensive analysis of the global Border Security ... revenues of $17.98 billion in 2016. Now: ... leader in software and hardware technologies for advanced video ...
Breaking Biology News(10 mins):