Navigation Links
Researchers expand yeast's sugary diet to include plant fiber
Date:9/9/2010

University of California, Berkeley, researchers have taken genes from grass-eating fungi and stuffed them into yeast, creating strains that produce alcohol from tough plant material cellulose that normal yeast can't digest.

The feat could be a boon for the biofuels industry, which is struggling to make cellulosic ethanol ethanol from plant fiber, not just cornstarch or sugar economically feasible.

"By adding these genes to yeast, we have created strains that grow better on plant material than does wild yeast, which eats only glucose or sucrose," said Jamie Cate, UC Berkeley associate professor of molecular and cell biology and faculty scientist at Lawrence Berkeley National Laboratory (LBNL). "This improvement over the wild organism is a proof-of-principle that allows us to take the technology to the next level, with the goal of engineering yeast that can digest and ferment plant material in one pot."

The researchers hope to insert the same fungal genes into industrial yeast that now is used to turn sugar into ethanol biofuel in order to improve the efficiency of the fermentation process.

"The use of these cellodextrin transporters is not limited to yeast that makes ethanol," Cate said. "They could be used in any yeast that's been engineered to make, for example, other alcohols or jet fuel substitutes."

Cate and his UC Berkeley and LBNL colleagues, including first author Jonathan M. Galazka, a UC Berkeley graduate student, report their success this week in the journal Science Express. The work is funded by the Energy Biosciences Institute (EBI), a research collaboration between UC Berkeley, the University of Illinois, LBNL and the funding sponsor, BP.

Currently, the biofuel industry employs brewer's yeast, the single-celled fungus Saccharomyces cerevisiae, to convert sugar, cornstarch or other simple carbohydrates into ethanol by fermentation. But plants contain sugar polymers that yeast cannot eat in particular, cellulose, a tough molecule composed of glucose molecules linked together in long chains. The biofuels industry is now building demonstration plants that will use "cellulosic" sources such as corn stalks, leaves and cobs, paper waste and other plant material to make ethanol.

But cellulosic processes are complex and expensive, Cate said. The plant material must first be broken down into sugars through a process called saccharification. Enzymes called cellulases are added to convert cellulose to short-chain sugars, called cellodextrins, and these must be further broken down into glucose molecules by the enzyme beta-glucosidase. Only then can yeast work its magic and turn the glucose into alcohol.

Other fungi, however, can digest cellulose, though they don't produce alcohol. One of these, Neurospora crassa, a common fungus whose preferred diet is fire-damaged plants, has been studied in the laboratory for more than 100 years, Cate said.

Last year, Chaoguang Tian, a former UC Berkeley post-doctoral fellow in Professor Louise Glass's laboratory who now is at the Tianjin Institute of Industrial Biotechnology in China, and William T. Beeson, a graduate student in UC Berkeley's College of Chemistry, along with Cate and other UC Berkeley researchers, conducted a genome-wide analysis of Neurospora crassa to locate genes that are turned on when the fungus grows on cellulose.

The genome-wide systems analysis turned up a family of genes which produces proteins that transport sugars into the Neurospora cell to be used as fuel. The researchers suspected that some of these transporters would allow Neurospora to import cellodextrins in particular, the two-, three- and four-glucose molecules (cellobiose, cellotriose and cellotetraose, respectively). A search through the genomes of other fungi that grow on plants turned up similar genes in many of them, including the black truffle, which is symbiotic on tree roots.

Thanks to previous work funded by the National Institutes of Health, the team easily obtained Neurospora "knock-out" strains missing specific transporter genes and confirmed that, without all of them, the fungus could no longer eat cellodextrins as quickly.

"Most sugar-transporters let one sugar in at a time," Galazka said. "The sugar-transporters we found in Neurospora actually let in an entire chain of sugars. This means that four sugars can enter the fungus at once, if they are linked together.

Galazka subsequently created six strains of yeast, each with one extra gene from the Neurospora transporter family, along with a beta-glucosidase gene, also from Neurospora. The yeast strains produced Neurospora transporter proteins, and two of the strains were able to grow on cellodextrin as well as on glucose. One strain produced 60 percent more alcohol than normal yeast when grown on the two-glucose molecule, cellobiose.

Apparently, Galazka said, while normal yeast can't import cellodextrins or digest them once they're inside the cell, if they are given a Neurospora transporter and a beta-glucosidase from the fungus that stays inside the cells, it's able to do both.

"We've effectively made yeast more compatible with the enzymes used to break down woody plants," he said. "We think that the discovery of these transporters is a key step towards the efficient conversion of plant matter now considered waste into fuel."

"We now have to get these genes into industrial yeast strains the hearty, rock 'em, sock 'em yeast used commercially and get them to use more complicated plant material," Cate said.

He noted that a cellulosic process using yeast with transporter proteins could avoid having to add beta-glucosidases to the fermentation chamber, but enzymes would still be needed to break down cellulose into cellodextrins.

He and his colleagues are now collaborating with other EBI researchers to create improved transporter proteins and yeast strains.


'/>"/>

Contact: Robert Sanders
rsanders@berkeley.edu
510-643-6998
University of California - Berkeley
Source:Eurekalert  

Related biology technology :

1. NIST researchers hear puzzling new physics from graphene quartets quantum harmonies
2. Virginia Tech researchers contribute to turkey genome sequencing
3. Researchers create new class of piezoelectric logic devices using zinc oxide nanowires
4. Researchers stretch a lackluster material into a possible electronics revolution
5. Researchers successfully test new alternative to traditional semiconductors
6. WSU researchers use super-high pressures to create super battery
7. Pitt-led researchers to build foundation for quantum supercomputers with $7.5 million federal grant
8. Engineering researchers simplify process to make worlds tiniest wires
9. CSHL researchers demonstrate efficacy of antisense therapy for spinal muscular atrophy
10. Caliper Owners Group Meeting Showcases Critical Role of Biopharma and Academic Researchers for Improving Healthcare and Quality of Life
11. Researchers develop living, breathing human lung-on-a-chip
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers expand yeast's sugary diet to include plant fiber
(Date:12/8/2016)... BARCELONA, Spain , Dec. 8, 2016  Anaconda ... on the development of the next generation neuro-thrombectomy system ... the appointment of Tudor G. Jovin, MD to join ... to serve as a strategic network of scientific and ... progresses the development of the ANCD BRAIN ® ...
(Date:12/8/2016)... CA (PRWEB) , ... December 08, 2016 , ... ... as finalists in the World Technology Awards. uBiome is one of just six ... across all categories. , In addition to uBiome, companies nominated as finalists in ...
(Date:12/8/2016)... Dec. 8, 2016 Soligenix, Inc. (OTCQB: SNGX) ... on developing and commercializing products to treat rare diseases ... that it will be hosting an Investor Webcast Event ... the origins of innate defense regulators (IDRs) as a ... oral mucositis and the recently announced and published Phase ...
(Date:12/8/2016)... Eutilex Co. Ltd. today announced that it ... A financing. This financing round included participation from DS ... Bio Angel. This new funding brings the total capital ... since its founding in 2015. The ... commercialization of its immuno-oncology programs, expand its R&D capabilities ...
Breaking Biology Technology:
(Date:6/27/2016)... DUBLIN , June 27, 2016 Research ... in North America 2016-2020" report to their offering. ... North America to grow at a CAGR ... has been prepared based on an in-depth market analysis with inputs ... growth prospects over the coming years. The report also includes a ...
(Date:6/22/2016)... 2016   Acuant , the leading ... has partnered with RightCrowd ® to ... Management, Self-Service Kiosks and Continuous Workforce Assurance. ... functional enhancements to existing physical access control ... with an automated ID verification and authentication ...
(Date:6/21/2016)... 2016 NuData Security announced today that Randy ... principal product architect and that Jon Cunningham ... development. Both will report directly to Christopher ... reflect NuData,s strategic growth in its product and ... demand and customer focus values. ...
Breaking Biology News(10 mins):