Navigation Links
Researchers discover breakthrough technique that could make electronics smaller and better
Date:9/3/2013

An international group of researchers from the University of Minnesota, Argonne National Laboratory and Seoul National University have discovered a groundbreaking technique in manufacturing nanostructures that has the potential to make electrical and optical devices smaller and better than ever before. A surprising low-tech tool of Scotch Magic tape ended up being one of the keys to the discovery.

The research is published today in Nature Communications, an international online research journal.

Combining several standard nanofabrication techniqueswith the final addition of the Scotch Magic taperesearchers at the University of Minnesota created extremely thin gaps through a layer of metal and patterned these tiny gaps over the entire surface of a four-inch silicon wafer. The smallest gaps were only one nanometer wide, much smaller than most researchers have been able to achieve. In addition, the widths of the gaps could be controlled on the atomic level. This work provides the basis for producing new and better nanostructures that are at the core of advanced electronic and optical devices.

One of the potential uses of nanometer-scale gaps in metal layers is to squeeze light into spaces much smaller than is otherwise possible. Collaborators at Seoul National University, led by Prof. Dai-Sik Kim, and Argonne National Laboratory, led by Dr. Matthew Pelton, showed that light could readily be squeezed through these gaps, even though the gaps are hundreds or even thousands of times smaller than the wavelength of the light used. Researchers are very interested in forcing light into small spaces because this is a way of boosting the intensity of the light. The collaborators found that the intensity inside the gaps is increased by as much as 600 million times.

"Our technology, called atomic layer lithography, has the potential to create ultra-small sensors with increased sensitivity and also enable new and exciting experiments at the nanoscale like we've never been able to do before," said Sang-Hyun Oh, one of the lead researchers on the study and a professor of electrical and computer engineering in the University of Minnesota's College of Science and Engineering. "This research also provides the basis for future studies to improve electronic and photonic devices."

One of the most surprising outcomes of the research is that Scotch Magic tape was one of the keys to the discovery. Etching one-nanometer-wide gaps into metals is not feasible with existing tools. Instead, the researchers in Oh's team constructed the nano-gaps by layering atomic-scale thin films on the sides of metal patterns and then capping the structure with another metal layer. No expensive patterning tools were needed to form the gaps this way, but it was challenging to remove the excess metals on top and expose the tiny gaps. During a frustrating struggle of trying to find a way to remove the metal films, University of Minnesota Ph.D. student and lead author of the study Xiaoshu Chen found that by using simple Scotch Magic tape, the excess metals could be easily removed.

"The Scotch tape works nicely, which was unexpected," said Oh. "Our technique is so simple yet can create uniform and ultra-small gaps like we've never been able to do before. We hope that it will rapidly be taken up by many researchers."


'/>"/>

Contact: Rhonda Zurn
rzurn@umn.edu
612-626-7959
University of Minnesota
Source:Eurekalert

Related biology technology :

1. New England Biolabs Introduces Polbase, an Information Repository of Scientific Data for Polymerase Researchers
2. In new quantum-dot LED design, researchers turn troublesome molecules to their advantage
3. Multidisciplinary team of researchers develop world’s lightest material
4. Researchers shrink tumors and minimize side effects using tumor-homing peptide to deliver treatment
5. Innovative MetaMorph® NX Software Shatters Barriers Between Researchers and Image Analysis Goals with Exclusive Visual Workflow
6. UCLA researchers demonstrate fully printed carbon nanotube transistor circuits for displays
7. Penn and Brown researchers demonstrate earthquake friction effect at the nanoscale
8. Two Top Biological Imaging Centers Offer Powerful Free Online Tool to Researchers, Educators, and Public
9. Researchers develop one of the worlds smallest electronic circuits
10. MU researchers identify key plant immune response in fight against bacteria
11. Researchers realize high-power, narrowband terahertz source at room temperature
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/27/2016)... MIAMI (PRWEB) , ... April 27, 2016 , ... ... joined the GSCG Advisory Board. Ross is the founder of GSCG affiliate Kimera Labs ... of Miami, where he studied hematopoietic stem cell transplantation for hematologic disorders and the ...
(Date:4/27/2016)... ReportsnReports.com adds 2016 global ... on US, EU, China ... healthcare business intelligence collection of its growing online ... on the Flow Cytometry market spread across 153 ... tables and figures is now available at ...
(Date:4/26/2016)... , ... April 26, 2016 , ... The European ... been selected as one of three finalists for the European Inventor Award 2016 in ... innovation prize will be announced at a ceremony in Lisbon on June 9th. , ...
(Date:4/26/2016)... ... ... This unique "Fertility Happy Hour" event will be held at The Saguaro Hotel ... on female fertility and the reproductive technologies that are empowering a new generation of ... The Arizona Center, will give a short presentation and answer questions about age ...
Breaking Biology Technology:
(Date:3/15/2016)... --> --> ... Research "Digital Door Lock Systems Market - Global Industry Analysis, ... global digital door lock systems market in terms of revenue ... forecast to grow at a CAGR of 31.8% during the ... enterprises (MSMEs) across the world and high industrial activity driving ...
(Date:3/11/2016)... March 11, 2016 --> ... research report "Image Recognition Market by Technology (Pattern Recognition), ... Advertising), by Deployment Type (On-Premises and Cloud), by Industry ... published by MarketsandMarkets, the global market is expected to ... 29.98 Billion by 2020, at a CAGR of 19.1%. ...
(Date:3/9/2016)... GARDENS, Fla. , March 9, 2016 /PRNewswire/ ... management authentication and enrollment solutions, today announced the ... DigitalPersona ® Altus multi-factor authentication platform. ... and InfoSec managers to step-up security where it,s ... Washington, DC . ...
Breaking Biology News(10 mins):