Navigation Links
Researchers develop technique to convert thermoelectric material into high performance electricity
Date:11/19/2013

A team of Clemson University physicists consisting of nanomaterial scientists Apparao Rao and Ramakrishna Podila and thermoelectricians Terry Tritt, Jian He and Pooja Puneet worked synergistically through the newly established Clemson Nanomaterials Center to develop a novel technique of tailoring thermoelectric properties of n-type bismuth telluride for high thermoelectric performance.

Their findings were published in journal Scientific Reports.

The current US energy economy and environment are increasingly threatened by fast-dwindling domestic reserves of fossil fuel coupled with severe environmental impact of fossil fuel combustion. Highly-efficient thermoelectric devices are expected to provide clean energy technology-needs of the hour for US energy sustainability. This research is a step towards optimizing the device performance since it outlines a methodology to overcome a challenge that has "frustrated" thermoelectric researchers to date.

Thermoelectric (TE) devices convert waste heat into electricity through a unique material's property called the Seebeck effect. Basically, the Seebeck effect results in a voltage across the two ends of a TE material, akin to the voltage present across the two ends of a AA battery, when the TE material is properly exposed to the waste heat. In such devices, the efficiency of converting heat into electricity is governed by certain strongly coupled materials properties, viz., electrical resistivity, Seebeck coefficient, and thermal conductivity. A functional TE device consists of multiple legs made up of p-type and n-type materials, just as a diode comprises of a p-n junction.

Bismuth telluride (Bi2Te3) is a layered material and can be viewed as a deck of playing cards, wherein each card is only a few atoms thick. Bi2Te3 is currently regarded as the state-of-the-art TE material with high efficiency for converting waste heat into electricity, and is therefore attractive for energy harvesting processes.

Traditional nanosizing methods failed to improve the performance of n-type Bi2Te3 since they simply downgrade all materials properties simultaneously. Therefore, Clemson researchers and colleagues developed a novel nanosizing method in which we first peel n-type Bi2Te3 into atomically thin-sheets (akin to graphene which is one atom thick sheet of carbon atoms) and reassemble them using a spark plasma sintering process.

The researchers found that that the above described two-step process of first separating the deck of cards into individual cards and then re-assembling them into a deck via spark plasma sintering does enable us to suitably tailor the materials properties of n-type Bi2Te3for high TE performance. In this approach, the so-called 'interfacial charged defects' are generated in the sintered n-type Bi2Te3 which not only improves its structural properties but also its thermoelectric efficiency over a wide temperature window, thus making it extremely compatible with p-type Bi2Te3 for manufacturing efficient TE devices.

The improved compatibility factor (demonstrated in this paper) is expected to open new possibilities for highly efficient TE devices. The fascinating and noteworthy element of this research is that defects, which often connote impurity and are associated with low performance or efficiency, can indeed be used to tune the properties of materials to our advantage.

Today's scientific community lacks a comprehensive understanding of defects, mainly due to the absence of methods that can controllably generate and manipulate defects. The future of this research will be aimed at developing tools to generate and study defects at a fundamental level which will in turn allow the researchers to optimize materials properties of not only TE materials but also of a new class of two-dimensional materials beyond the Nobel-winning graphene for energy generation and storage.


'/>"/>

Contact: Ramakrishna Podila
rpodila@g.clemson.edu
Clemson University
Source:Eurekalert  

Related biology technology :

1. New England Biolabs Introduces Polbase, an Information Repository of Scientific Data for Polymerase Researchers
2. In new quantum-dot LED design, researchers turn troublesome molecules to their advantage
3. Multidisciplinary team of researchers develop world’s lightest material
4. Researchers shrink tumors and minimize side effects using tumor-homing peptide to deliver treatment
5. Innovative MetaMorph® NX Software Shatters Barriers Between Researchers and Image Analysis Goals with Exclusive Visual Workflow
6. UCLA researchers demonstrate fully printed carbon nanotube transistor circuits for displays
7. Penn and Brown researchers demonstrate earthquake friction effect at the nanoscale
8. Two Top Biological Imaging Centers Offer Powerful Free Online Tool to Researchers, Educators, and Public
9. Researchers develop one of the worlds smallest electronic circuits
10. MU researchers identify key plant immune response in fight against bacteria
11. Researchers realize high-power, narrowband terahertz source at room temperature
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers develop technique to convert thermoelectric material into high performance electricity
(Date:4/29/2016)... ... ... The MIT bioLogic design team has won multiple A' Design Awards ... be applied to fabric and formed into living interfaces between body and environment. They ... The team harvested Natto cells and applied them to fabric with custom 3D printers.The ...
(Date:4/29/2016)... ... 29, 2016 , ... Summit for Stem Cell has received a $250,000 grant ... stem cell therapy for the treatment of Parkinson’s disease. The Summit research project is ... Scripps Research Institute in San Diego, CA. , The aim of of ...
(Date:4/28/2016)... ... April 28, 2016 , ... ... Connecticut's innovative, growing companies, today announced the launch of VentureClash , a ... companies. , “VentureClash looks to attract the best early-stage companies here ...
(Date:4/27/2016)... ... April 27, 2016 , ... Shimadzu Scientific Instruments ... Spring 2016 Marijuana Business Conference and Expo. Shimadzu’s high-performance instruments enable laboratories to ... more. Expo attendees can stop by booth 1021 to learn how Shimadzu’s instruments ...
Breaking Biology Technology:
(Date:3/14/2016)... March 14, 2016 NXTD ) ("NXT-ID" ... commerce market, announces the airing of a new series of ... week of March 21 st .  The commercials will air ... popular Squawk on the Street show. --> NXTD ... growing mobile commerce market, announces the airing of a new ...
(Date:3/11/2016)... --> --> ... Recognition Market by Technology (Pattern Recognition), by Component (Hardware, ... Type (On-Premises and Cloud), by Industry Vertical and by ... the global market is expected to grow from USD ... 2020, at a CAGR of 19.1%. , ...
(Date:3/9/2016)... 9, 2016 This BCC Research report provides ... the RNA Sequencing (RNA Seq) market for the years ... tools and reagents, data analysis, and services. ... the RNA-Sequencing market such as RNA-Sequencing tools and reagents, ... factors affecting each segment and forecast their market growth, ...
Breaking Biology News(10 mins):