Navigation Links
Researchers develop method for transmitting medical images via cell phones

Jerusalem, April 29, 2008 A process to transmit medical images via cellular phones that has been developed by a Hebrew University of Jerusalem researcher has the potential to provide sophisticated radiological diagnoses and treatment to the majority of the worlds population lacking access to such technology. This would include millions in developing nations as well as those in rural areas of developed countries who live considerable distances from modern medical centers.

Prof. Boris Rubinsky has demonstrated the feasibility of his new concept that can replace current systems -- which are based on conventional, stand-alone medical imaging devices -- with a new medical imaging system consisting of two independent components connected through cellular phone technology. The concept could be developed with various medical imaging modalities. This new technique is described in the latest online issue of the journal, Public Library of Science ONE (PLoS ONE).

Rubinsky is head of the Research Center for Research in Bioengineering in the Service of Humanity and Society at the Benin School of Computer Science and Engineering at the Hebrew University of Jerusalem and is also a professor of bioengineering and mechanical engineering at the University of California, Berkeley. Working with him on this project were Yair Granot and Antoni Ivorra, both of the Biophysics Graduate Group of the latter institution.

Their invention is jointly patented and owned by Yissum, the Hebrew Universitys Technology Transfer Company, and by the University of California, Berkeley. Commercialization efforts will be made by Yissum and by Berkeley's technology transfer organization.

According to the World Health Organization, some three-quarters of the world's population has no access to ultrasounds, X-rays, magnetic resonance images and other medical imaging technology used for a wide range of applications, from detecting tumors to confirming signs of active tuberculosis infections to monitoring the health of developing fetuses during pregnancy.

The conventional medical imaging systems in use today -- self-contained units combining data acquisition hardware with software processing hardware and imaging display -- are expensive devices demanding sensitive handling and maintenance and extensive user training. Only those treatment centers with the required financial and manpower resources are usually able to acquire and utilize them. Even when such equipment does exist in developing countries, it is often not in use because it is too sophisticated or in disrepair or because the health personnel are not trained to use it, said Rubinsky..

"Imaging is considered one of the most important achievements in modern medicine. Diagnosis and treatment of an estimated 20 percent of diseases would benefit from medical imaging, yet this advancement has been out of reach for millions of people in the world because the equipment is too costly to maintain. Our system would make imaging technology inexpensive and accessible for these underserved populations," said Rubinsky.

Under the new technology developed by Rubinsky, an independent data acquisition device (DAD) at a remote patient site that is simple with limited controls and no image display capability would be connected via cellular phone technology with an advanced image reconstruction and hardware control multiserver unit at a central site (which can be anywhere in the world).

The cellular phone technology transmits unprocessed, raw data from the patient site DAD to the cutting- edge central facility that has the sophisticated software and hardware required for image reconstruction. This data is then returned from the central facility to the cellular phone at the DAD site in the form of an image and displayed on its screen. "The DAD can be made with off-the-shelf parts that somebody with basic technical training can operate, Rubinsky noted.

The fact that the image itself is produced in a centralized location and not on the measurement device has the potential to make technological advances in medical imaging processing continuously available to remote areas of the world, which despite their lack of sophisticated equipment in general often do have cell phone communication. (Indeed, it is estimated that more than 60 percent of all cell phones currently in use in the world are in developing countries.)

Rubinsky stresses the key economic benefits of this new method: By simplifying the apparatus at the patient site, it reduces the cost of medical imaging devices in general. It also removes the need for advanced imaging training of the personnel at the patient site.

The researchers chose electrical impedance tomography (EIT) to demonstrate the feasibility of using cell phones in medical imaging. EIT is based upon the principle that diseased tissue transmits electrical currents differently from healthy tissue. The difference in resistance from electrical currents is translated into an image, which can be transmitted via cell phone technology.

Utilizing commercially available parts, the research team built a simple data acquisition device for the experiment. The device had 32 stainless steel electrodes half to inject the electrical current and the other half to measure the voltage connected to a gel-filled container that simulated breast tissue with a tumor.

A total of 225 voltage measurements were taken and uploaded to a cell phone, which was hooked up to the device with a USB cable. The cell phone was then used to dial into a powerful central computer that contained software to process the packet of raw data that was transmitted. An image was then reconstructed and sent back to the cell phone for viewing. The researchers verified that the simulated tumor was clearly visible in the image, demonstrating the proof-of-principle that this system is feasible.


Contact: Jerry Barach
The Hebrew University of Jerusalem

Related biology technology :

1. Researchers create the first thermal nanomotor in the world
2. U-Md. Researchers Report Advance in Biological Microfactories for Drug Research
3. Boston College, MIT researchers achieve dramatic increase in thermoelectric efficiency
4. Iowa State researchers developing system to efficiently convert biomass to ethanol
5. Researchers engineer new polymers to change their stiffness and strength when exposed to liquids
6. Sigma-Aldrich Announces New Prestige Antibodies(TM) Line for Proteomics and Cell Biology Researchers
7. Stanford researchers hear the sound of quantum drums
8. Researchers at Leeds mine the Terahertz gap
9. Researchers create gold aluminum, black platinum, blue silver
10. Researchers Pinpoint Best Treatment to Reduce Deadly USA300, MRSA Staph Infections
11. Researchers develop darkest manmade material
Post Your Comments:
Related Image:
Researchers develop method for transmitting medical images via cell phones
(Date:11/24/2015)... ... 2015 , ... InSphero AG, the leading supplier of easy-to-use solutions for production, ... to serve as Chief Operating Officer. , Having joined InSphero in November ... and was promoted to Head of InSphero Diagnostics in 2014. There she has ...
(Date:11/24/2015)... HemoShear Therapeutics, LLC, a privately held ... disorders, announced today the appointment of H. ... (BOD). Mr. Watkins is the former president and ... and also served as the chairman of the ... Chairman and CEO of HemoShear Therapeutics. "The combination ...
(Date:11/24/2015)... Nov. 24, 2015 According to two new studies, ... This is something that many doctors, scientists, and public health ... remains: with fewer PSA tests being done, will there be ... Dr. David Samadi, "Despite the efforts made in ... the second leading cancer cause of death in men, killing ...
(Date:11/23/2015)... ... November 23, 2015 , ... Shimadzu Corporation ... its Nexera UC Unified Chromatography system. The award from R&D magazine recognizes Shimadzu’s ... of the year in the analytical and testing category. R&D Magazine chose the ...
Breaking Biology Technology:
(Date:10/29/2015)... Calif. , Oct. 29, 2015  The J. ... new report titled, "DNA Synthesis and Biosecurity: Lessons Learned ... the Department of Health and Human Services guidance for ... in 2010. --> ... it also has the potential to pose unique biosecurity ...
(Date:10/29/2015)... NXTD ) ("NXT-ID" or ... the growing mobile commerce market and creator of ... leading marketplace to discover and buy innovative technology ... on StackSocial for this holiday season.   ... a biometric authentication company focused on the growing ...
(Date:10/27/2015)... SAN JOSE, Calif. , Oct. 27, 2015 /PRNewswire/ ... human interface solutions, today announced that Google has adopted ... family of touch controller solutions to power its newest ... Nexus 6P by Huawei. --> ... ecosystem partners like Google to provide strategic collaboration in ...
Breaking Biology News(10 mins):