Navigation Links
Researchers develop darkest manmade material
Date:1/22/2008

Troy, N.Y. Researchers at Rensselaer Polytechnic Institute and Rice University have created the darkest material ever made by man.

The material, a thin coating comprised of low-density arrays of loosely vertically-aligned carbon nanotubes, absorbs more than 99.9 percent of light and one day could be used to boost the effectiveness and efficiency of solar energy conversion, infrared sensors, and other devices. The researchers who developed the material have applied for a Guinness World Record for their efforts.

It is a fascinating technology, and this discovery will allow us to increase the absorption efficiency of light as well as the overall radiation-to-electricity efficiency of solar energy conservation, said Shawn-Yu Lin, professor of physics at Rensselaer and a member of the universitys Future Chips Constellation, who led the research project. The key to this discovery was finding how to create a long, extremely porous vertically-aligned carbon nanotube array with certain surface randomness, therefore minimizing reflection and maximizing absorption simultaneously.

The research results were published in the journal Nano Letters.

All materials, from paper to water, air, or plastic, reflect some amount of light. Scientists have long envisioned an ideal black material that absorbs all the colors of light while reflecting no light. So far they have been unsuccessful in engineering a material with a total reflectance of zero.

The total reflectance of conventional black paint, for example, is between 5 and 10 percent. The darkest manmade material, prior to the discovery by Lins group, boasted a total reflectance of 0.16 percent to 0.18 percent.

Lins team created a coating of low-density, vertically aligned carbon nanotube arrays that are engineered to have an extremely low index of refraction and the appropriate surface randomness, further reducing its reflectivity. The end result was a material with a total reflective index of 0.045 percent more than three times darker than the previous record, which used a film deposition of nickel-phosphorous alloy.

The loosely-packed forest of carbon nanotubes, which is full of nanoscale gaps and holes to collect and trap light, is what gives this material its unique properties, Lin said. Such a nanotube array not only reflects light weakly, but also absorbs light strongly. These combined features make it an ideal candidate for one day realizing a super black object.

The low-density aligned nanotube sample makes an ideal candidate for creating such a super dark material because it allows one to engineer the optical properties by controlling the dimensions and periodicities of the nanotubes, said Pulickel Ajayan, the Anderson Professor of Engineering at Rice University in Houston, who worked on the project when he was a member of the Rensselaer faculty.

The research team tested the array over a broad range of visible wavelengths of light, and showed that the nanotube arrays total reflectance remains constant.

Its also interesting to note that the reflectance of our nanotube array is two orders of magnitude lower than that of the glassy carbon, which is remarkable because both samples are made up of the same element carbon, said Lin.

This discovery could lead to applications in areas such as solar energy conversion, thermalphotovoltaic electricity generation, infrared detection, and astronomical observation.

Other researchers contributing to this project and listed authors of the paper include Rensselaer physics graduate student Zu-Po Yang; Rice postdoctoral research associate Lijie Ci; and Rensselaer senior research scientist James Bur.

The project was funded by the U.S. Department of Energys Office of Basic Energy Sciences and the Focus Center New York for Interconnects.

Lins research was conducted as part of the Future Chips Constellation at Rensselaer, which focuses on innovations in materials and devices, in solid state and smart lighting, and applications such as sensing, communications, and biotechnology. A new concept in academia, Rensselaer constellations are led by outstanding faculty in fields of strategic importance. Each constellation is focused on a specific research area and comprises a multidisciplinary mix of senior and junior faculty, as well as postdoctoral researchers and graduate students.


'/>"/>

Contact: Michael Mullaney
mullam@rpi.edu
518-276-6161
Rensselaer Polytechnic Institute
Source:Eurekalert  

Related biology technology :

1. Boost for Malaria Vaccine Development by Combining Strengths of Dutch and American Researchers
2. Researchers use magnetism to target cells to animal arteries
3. Ames Laboratory researchers solve fuel-cell membrane structure conundrum
4. Researchers outline structure of largest nonvirus particle ever crystallized
5. UD researchers race ahead with latest spintronics achievement
6. ASU researchers improve memory devices using nanotech
7. Researchers underscore limitations of genetic ancestry tests
8. Researchers measure carbon nanotube interaction
9. Stevens researchers provide new information about mass spectrometry
10. CU researchers shed light on light-emitting nanodevice
11. Long-awaited international ethical guidelines for biobank researchers
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers develop darkest manmade material
(Date:2/16/2017)... Calif. , Feb. 16, 2017  ArmaGen, ... developing groundbreaking therapies to treat severe neurological disorders, ... children treated with AGT-181, the company,s investigational therapy ... (also known as mucopolysaccharidosis type I, or MPS ... 2 proof-of-concept (POC) study, presented today at the ...
(Date:2/16/2017)... Mass. , Feb. 16, 2017   Biostage, ... the "Company"), a biotechnology company developing bioengineered organ implants ... esophagus, bronchus and trachea, announced today the closing on ... of 20,000,000 shares of common stock and warrants to ... proceeds of $8.0 million. The offering was priced at ...
(Date:2/16/2017)... DIEGO , Feb. 16, 2017  Dermata ... innovative products to treat a variety of dermatological ... million Series 1a financing and entered into a ... (SVB).  Dermata intends to use the capital for ... making major advancements in the treatment of serious ...
(Date:2/16/2017)... 16, 2017  Windtree Therapeutics, Inc. (Nasdaq: ... developing aerosolized KL4 surfactant therapies for respiratory diseases, ... study showed that aerosolized KL4 surfactant reduced lung ... preclinical animal model. The Company believes that these ... evidence that supports the role of KL4 surfactant ...
Breaking Biology Technology:
(Date:1/24/2017)... , Jan. 24, 2017  It sounds simple ... sock that monitors vital signs and alerts parents ... infant,s oxygen saturation level drops. But pediatric experts ... to parents, with no evidence of medical benefits, ... are marketed aggressively to parents of healthy babies, ...
(Date:1/19/2017)... Jan. 19, 2017 Sensory Inc ... and security for consumer electronics, and i ... systems and cybersecurity solutions, today announced a global ... financial institutions worldwide to bolster security of data ... secure user authentication platforms they offer, innerCore now ...
(Date:1/12/2017)... , Jan. 12, 2017  Trovagene, Inc. (NASDAQ: ... (ctDNA) technologies, today announced that it has signed agreements ... and the Middle East ... milestone marks the first wave of international distribution agreements ... and blood samples. The initial partners will ...
Breaking Biology News(10 mins):