Navigation Links
Researchers develop darkest manmade material

Troy, N.Y. Researchers at Rensselaer Polytechnic Institute and Rice University have created the darkest material ever made by man.

The material, a thin coating comprised of low-density arrays of loosely vertically-aligned carbon nanotubes, absorbs more than 99.9 percent of light and one day could be used to boost the effectiveness and efficiency of solar energy conversion, infrared sensors, and other devices. The researchers who developed the material have applied for a Guinness World Record for their efforts.

It is a fascinating technology, and this discovery will allow us to increase the absorption efficiency of light as well as the overall radiation-to-electricity efficiency of solar energy conservation, said Shawn-Yu Lin, professor of physics at Rensselaer and a member of the universitys Future Chips Constellation, who led the research project. The key to this discovery was finding how to create a long, extremely porous vertically-aligned carbon nanotube array with certain surface randomness, therefore minimizing reflection and maximizing absorption simultaneously.

The research results were published in the journal Nano Letters.

All materials, from paper to water, air, or plastic, reflect some amount of light. Scientists have long envisioned an ideal black material that absorbs all the colors of light while reflecting no light. So far they have been unsuccessful in engineering a material with a total reflectance of zero.

The total reflectance of conventional black paint, for example, is between 5 and 10 percent. The darkest manmade material, prior to the discovery by Lins group, boasted a total reflectance of 0.16 percent to 0.18 percent.

Lins team created a coating of low-density, vertically aligned carbon nanotube arrays that are engineered to have an extremely low index of refraction and the appropriate surface randomness, further reducing its reflectivity. The end result was a material with a total reflective index of 0.045 percent more than three times darker than the previous record, which used a film deposition of nickel-phosphorous alloy.

The loosely-packed forest of carbon nanotubes, which is full of nanoscale gaps and holes to collect and trap light, is what gives this material its unique properties, Lin said. Such a nanotube array not only reflects light weakly, but also absorbs light strongly. These combined features make it an ideal candidate for one day realizing a super black object.

The low-density aligned nanotube sample makes an ideal candidate for creating such a super dark material because it allows one to engineer the optical properties by controlling the dimensions and periodicities of the nanotubes, said Pulickel Ajayan, the Anderson Professor of Engineering at Rice University in Houston, who worked on the project when he was a member of the Rensselaer faculty.

The research team tested the array over a broad range of visible wavelengths of light, and showed that the nanotube arrays total reflectance remains constant.

Its also interesting to note that the reflectance of our nanotube array is two orders of magnitude lower than that of the glassy carbon, which is remarkable because both samples are made up of the same element carbon, said Lin.

This discovery could lead to applications in areas such as solar energy conversion, thermalphotovoltaic electricity generation, infrared detection, and astronomical observation.

Other researchers contributing to this project and listed authors of the paper include Rensselaer physics graduate student Zu-Po Yang; Rice postdoctoral research associate Lijie Ci; and Rensselaer senior research scientist James Bur.

The project was funded by the U.S. Department of Energys Office of Basic Energy Sciences and the Focus Center New York for Interconnects.

Lins research was conducted as part of the Future Chips Constellation at Rensselaer, which focuses on innovations in materials and devices, in solid state and smart lighting, and applications such as sensing, communications, and biotechnology. A new concept in academia, Rensselaer constellations are led by outstanding faculty in fields of strategic importance. Each constellation is focused on a specific research area and comprises a multidisciplinary mix of senior and junior faculty, as well as postdoctoral researchers and graduate students.


Contact: Michael Mullaney
Rensselaer Polytechnic Institute

Related biology technology :

1. Boost for Malaria Vaccine Development by Combining Strengths of Dutch and American Researchers
2. Researchers use magnetism to target cells to animal arteries
3. Ames Laboratory researchers solve fuel-cell membrane structure conundrum
4. Researchers outline structure of largest nonvirus particle ever crystallized
5. UD researchers race ahead with latest spintronics achievement
6. ASU researchers improve memory devices using nanotech
7. Researchers underscore limitations of genetic ancestry tests
8. Researchers measure carbon nanotube interaction
9. Stevens researchers provide new information about mass spectrometry
10. CU researchers shed light on light-emitting nanodevice
11. Long-awaited international ethical guidelines for biobank researchers
Post Your Comments:
Related Image:
Researchers develop darkest manmade material
(Date:10/12/2017)... ... October 12, 2017 , ... They call it the ... network, a depiction of a system of linkages and connections so complex and ... professor of computer science at Worcester Polytechnic Institute (WPI) and director of the ...
(Date:10/12/2017)... ... ... AMRI, a global contract research, development and manufacturing organization ... quality of life, will now be offering its impurity solutions as a stand-alone ... for all new drug products, including the finalization of ICH M7 earlier this ...
(Date:10/11/2017)... CA, USA (PRWEB) , ... October 11, 2017 , ... ... to take place on 7th and 8th June 2018 in San Francisco, CA. The ... influencers as well as several distinguished CEOs, board directors and government officials from around ...
(Date:10/11/2017)... ... October 11, 2017 , ... A new ... rates in frozen and fresh in vitro fertilization (IVF) transfer cycles. ... to IVF success. , After comparing the results from the fresh and frozen ...
Breaking Biology Technology:
(Date:4/19/2017)... The global military biometrics market ... by the presence of several large global players. The ... major players - 3M Cogent, NEC Corporation, M2SYS Technology, ... 61% of the global military biometric market in 2016. ... military biometrics market boast global presence, which has catapulted ...
(Date:4/17/2017)... MELBOURNE, Florida , April 17, 2017 ... security technology company, announces the filing of its 2016 Annual Report ... Securities and Exchange Commission. ... Report on Form 10-K is available in the Investor Relations section ... well as on the SEC,s website at . ...
(Date:4/13/2017)... , April 13, 2017 According to a new ... Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, ... IAM Market is expected to grow from USD 14.30 Billion in 2017 ... (CAGR) of 17.3%. ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):