Navigation Links
Researchers create the world's most advanced genetic map
Date:7/20/2011

Boston, MA (July 20, 2011)A consortium led by scientists at the University of Oxford and Harvard Medical School has constructed the world's most detailed genetic map.

A genetic map specifies the precise areas in the genetic material of a sperm or egg where the DNA from the mother and father has been reshuffled in order to produce this single reproductive cell. The biological process whereby this reshuffling occurs is known as "recombination." While almost every genetic map built so far has been developed from people of European ancestry, this new map is the first constructed from African American recombination genomic data.

"This is the world's most accurate genetic map," said David Reich, professor of genetics at Harvard Medical School, who co-led the study with Simon Myers, a lecturer in the Department of Statistics at the University of Oxford.

The researchers were surprised to find that positions where recombination occurs in African Americans are significantly different from non-African populations.

"The landscape of recombination has shifted in African Americans compared with Europeans," said Anjali Hinch, first author and a post-graduate student at Oxford University's Wellcome Trust Centre for Human Genetics.

Simon Myers added, "More than half of African Americans carry a version of the biological machinery for recombination that is different than Europeans. As a result, African Americans experience recombination where it almost never occurs in Europeans."

The findings will be published in the July 21 edition of Nature.

An independent study that used a similar strategy to build a genetic map in African Americansled by University of California, Los Angeles, scientists Daniel Wegmann, Nelson Freimer and John Novembrewill be published in Nature Genetics.

Scientists have only recently begun to explore the genetic differences between individuals and populations and the role those differences play in human health. In that respect, the first draft of the human genome, completed a decade ago, was only a starting point for understanding the genetic origins of disease.

As researchers begin to parse those differences, a crucial tool is a genetic map, which in this case was based on where recombination has occurred across the genome. Recombination, together with mutation, accounts for all the genetic (and thus physical) variety we see within species. But while mutation refers to the errors introduced into single locations within genomes when cells divide, recombination refers to the process by which huge chunks of chromosomes are stitched together during sexual reproduction.

But this stitching process only occurs at specific locations. In a prior landmark set of papers, Myers and his colleagues identified a DNA code, or motif, that attracted part of the recombination machinery, a gene called PRDM9. Knowing the motif, a string of 13 DNA letters, researchers could zero in on the locations where recombination typically occurredthe "recombination hotspots."

"When recombination goes wrong, it can lead to mutations causing congenital diseases, for example diseases like Charcot-Marie-Tooth disease, or certain anemias," said Myers. "We found the same 13 base motif marking many of these disease mutation sites."

Explained Reich, "The places in the genome where there are recombination hotspots can thus also be disease hotspots. Charting recombination hotspots can thus identify places in the genome that have an especially high chance of causing disease."

The researchers discovered that the 13 base-pair motif that is responsible for many of the hotspots in Europeans accounts for only two thirds as much recombination in African Americans. They connected the remaining third to a new motif of 17 base pairs, which is recognized by a version of the recombinational machinery that occurs almost exclusively in people of African ancestry.

These findings are expected to help researchers understand the roots of congenital conditions that occur more often in African Americans (due to mutations at hotspots that are more common in African Americans), and also to help discover new disease genes in all populations, because of the ability to map these genes more precisely.

The new map is so accurate because African American individuals often have a mixture of African and European ancestry from over the last two hundred years. David Reich and Simon Myers are experts in analyzing genetic data to reconstruct the mosaic of regions of African and European genetic ancestry in DNA of African Americans. By applying a computer program they previously wrote, Anjali Hinch identified the places in the genomes where the African and European ancestry switches in almost 30,000 people, detecting about 70 switches per person. These areas corresponded to recombination events in the last few hundred years. Thus, the researchers identified more than two million recombination events that they used to build the map.

The study was only possible because of collaboration from 81 co-authors, using DNA samples from five large studies that have been carried out to study common diseases such as heart disease and cancer, funded by the National Institutes of Health, the Department of Defense, and many private foundations.

Said James Wilson, a professor at the University of Mississippi Medical Center who was responsible for coordinating the collaboration, "All the co-authors worked together in an incredibly collegial way to put together the enormous set of samples and high quality genetic data that made this study a success."


'/>"/>

Contact: David Cameron
david_cameron@hms.harvard.edu
617-432-0442
Harvard Medical School
Source:Eurekalert

Related biology technology :

1. Penn researchers show single drug and soft environment can increase platelet production
2. SANYO and BD Biosciences Collaborate to Offer Researchers Valuable Technology and Research Tools
3. TUM researchers develop environmentally friendly process to improve storage stability of probiotics
4. Researchers image graphene electron clouds, revealing how folds can harm conductivity
5. Researchers clarify properties of confined water within single-walled carbon nanotube pores
6. Researchers engineer the environment for stem cell development to control differentiation
7. Penn researchers break light-matter coupling strength limit in nanoscale semiconductors
8. Researchers From More Than 30 Countries Share Findings About the Use of Ultrasound in the Prevention, Diagnosis and Treatment of Heart Disease
9. Singapore researchers invent broadband graphene polarizer
10. Livermore researchers develop battery-less chemical detector
11. Researchers create terahertz invisibility cloak
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/10/2017)... CALIF. (PRWEB) , ... October 10, 2017 , ... San ... part of its corporate rebranding initiative announced today. The bold new look is ... reach, as the company moves into a significant growth period. , It will also ...
(Date:10/10/2017)... 2017 SomaGenics announced the receipt of a ... RealSeq®-SC (Single Cell), expected to be the first commercially ... microRNAs) from single cells using NGS methods. The NIH,s ... accelerate development of approaches to analyze the heterogeneity of ... techniques for measuring levels of mRNAs in individual cells ...
(Date:10/9/2017)... ... October 09, 2017 , ... At its national board meeting in North Carolina, ... Harvard University’s Departments of Physics and Astronomy, has been selected for membership in ... team for the 2015 Breakthrough Prize in Fundamental physics for the discovery of the ...
(Date:10/7/2017)... Oct. 6, 2017  The 2017 Nobel Prize ... scientists, Jacques Dubochet, Joachim Frank and ... cryo-electron microscopy (cryo-EM) have helped to ... structural biology community. The winners worked with systems ... routinely produce highly resolved, three-dimensional images of protein ...
Breaking Biology Technology:
(Date:4/19/2017)... ALBANY, New York , April 19, 2017 /PRNewswire/ ... highly competitive, as its vendor landscape is marked by ... in the market is however held by five major ... and Safran. Together these companies accounted for nearly 61% ... majority of the leading companies in the global military ...
(Date:4/11/2017)... GARDENS, Fla. , April 11, 2017 /PRNewswire/ ... management and secure authentication solutions, today announced that ... by Intelligence Advanced Research Projects Activity (IARPA) to ... IARPA,s Thor program. "Innovation has been ... and IARPA,s Thor program will allow us to ...
(Date:4/5/2017)... -- The Allen Institute for Cell Science today announces the ... and dynamic digital window into the human cell. The ... of deep learning to create predictive models of cell ... growing suite of powerful tools. The Allen Cell Explorer ... available resources created and shared by the Allen Institute ...
Breaking Biology News(10 mins):