Navigation Links
Researchers create terahertz invisibility cloak
Date:4/27/2011

Researchers at Northwestern University have created a new kind of cloaking material that can render objects invisible in the terahertz range.

Though this design can't translate into an invisibility cloak for the visible spectrum, it could have implications in diagnostics, security, and communication.

The cloak, designed by Cheng Sun, assistant professor of mechanical engineering at Northwestern's McCormick School of Engineering and Applied Science, uses microfabricated gradient-index materials to manipulate the reflection and refraction of light. Sun's results will be presented May 4 at CLEO: 2011, the annual Conference on Lasers and Electro-Optics.

Humans generally recognize objects through two features: their shape and color. To render an object invisible, one must be able to manipulate light so that it will neither scatter at an object's surface nor be absorbed or reflected by it (the process which gives objects color).

In order to manipulate light in the terahertz frequency, which lies between infrared and microwaves, Sun and his group developed metamaterials: materials that are designed at the atomic level. Sun's tiny, prism-shaped cloaking structure, less than 10 millimeters long, was created using a technique called electronic transfer microstereolithography, where researchers use a data projector to project an image on a liquid polymer, then use light to transform the liquid layer into a thin solid layer. Each of the prism's 220 layers has tiny holes that are much smaller than terahertz wavelengths, which means they can vary the refraction index of the light and render invisible anything located beneath a bump on the prism's bottom surface; the light then appears to be reflected by a flat surface.

Sun says the purpose of the cloak is not to hide items but to get a better understanding of how to design materials that can manipulate light propagation.

"This demonstrates that we have the freedom to design materials that can change the refraction index," Sun said. "By doing this we can manipulate light propagation much more effectively."

The terahertz range has been historically ignored because the frequency is too high for electronics. But many organic compounds have a resonant frequency at the terahertz level, which means they could potentially be identified using a terahertz scanner. Sun's research into terahertz optics could have implications in biomedical research (safer detection of certain kinds of cancers) and security (using terahertz scanners at airports).

Next Sun hopes to use what he's learned through the cloak to create its opposite: a terahertz lens. He has no immediate plans to extend his invisibility cloak to visible frequencies.

"That is still far away," he said. "We're focusing on one frequency range, and such a cloak would have to work across the entire spectrum."


'/>"/>

Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Source:Eurekalert

Related biology technology :

1. Understanding the science of solar-based energy: more researchers are better than one
2. Researchers decode viral process that prepares cells for HIV infection
3. Dartmouth researchers advance cellulosic ethanol production
4. Researchers develop new model for cystic fibrosis
5. Use it or lose it? Researchers investigate the dispensability of our DNA
6. Sigma-Aldrich and the University of Illinois Offer New Boronic Acid Surrogates to Researchers Worldwide Through Licensing Agreement
7. Researchers write protein nanoarrays using a fountain pen and electric fields
8. Researchers show how to stamp nanodevices with rubber molds
9. The Lancets New Online Medical Journal Helps Clinicians and Medical Researchers Find Practice-Changing Evidence Quickly and Easily
10. Ultrafast lasers give CU-Boulder researchers a snapshot of electrons in action
11. VAP(R) Cholesterol Test Helps Researchers Identify Treatment Effects of Combination Therapy
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... June 27, 2016  Sequenom, Inc. (NASDAQ: ... healthier lives through the development of innovative products and ... the United States denied its petition ... claims of Sequenom,s U.S. Patent No. 6,258,540 (",540 Patent") ... established by the Supreme Court,s Mayo Collaborative Services v. ...
(Date:6/27/2016)...  Liquid Biotech USA , ... Sponsored Research Agreement with The University of Pennsylvania ... cancer patients.  The funding will be used to ... clinical outcomes in cancer patients undergoing a variety ... employed to support the design of a therapeutic, ...
(Date:6/24/2016)... ... 24, 2016 , ... Researchers at the Universita Politecnica delle Marche in Ancona ... or pleural mesothelioma. Their findings are the subject of a new article on the ... are signposts in the blood, lung fluid or tissue of mesothelioma patients that can ...
(Date:6/23/2016)... A person commits a crime, and the detective ... the criminal down. An outbreak of foodborne illness ... (FDA) uses DNA evidence to track down the bacteria that ... It,s not. The FDA has increasingly used a complex, cutting-edge ... illnesses. Put as simply as possible, whole genome sequencing is ...
Breaking Biology Technology:
(Date:6/22/2016)... , June 22, 2016   Acuant ... and verification solutions, has partnered with RightCrowd ... solutions for Visitor Management, Self-Service Kiosks and ... products that add functional enhancements to existing ... corporations and venues with an automated ID ...
(Date:6/16/2016)... 16, 2016 The global ... to reach USD 1.83 billion by 2024, according ... Inc. Technological proliferation and increasing demand in commercial ... to drive the market growth.      ... The development of advanced multimodal techniques for biometric ...
(Date:6/7/2016)...  Syngrafii Inc. and San Antonio Credit Union ... integrating Syngrafii,s patented LongPen™ eSignature "Wet" solution into ... result in greater convenience for SACU members and ... existing document workflow and compliance requirements. ... Highlights: ...
Breaking Biology News(10 mins):