Navigation Links
Researchers create 'rubber-band electronics'
Date:7/3/2012

For people with heart conditions and other ailments that require monitoring, life can be complicated by constant hospital visits and time-consuming tests. But what if much of the testing done at hospitals could be conducted in the patient's home, office, or car?

Scientists foresee a time when medical monitoring devices are integrated seamlessly into the human body, able to track a patient's vital signs and transmit them to his doctors. But one major obstacle continues to hinder technologies like these: electronics are too rigid.

Researchers at the McCormick School of Engineering at Northwestern University, working with a team of scientists from the United States and abroad, have recently developed a design that allows electronics to bend and stretch to more than 200 percent their original size, four times greater than is possible with today's technology. The key is a combination of a porous polymer and liquid metal.

A paper about the findings, "Three-dimensional Nanonetworks for Giant Stretchability in Dielectrics and Conductors," was published June 26 in the journal Nature Communications.

"With current technology, electronics are able to stretch a small amount, but many potential applications require a device to stretch like a rubber band," said Yonggang Huang, Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering, who conducted the research with partners at the Korea Advanced Institute of Science and Technology (South Korea), Dalian University of Technology (China), and the University of Illinois at Urbana-Champaign. "With that level of stretchability we could see medical devices integrated into the human body."

In the past five years, Huang and collaborators at the University of Illinois have developed electronics with about 50 percent stretchability, but this is not high enough for many applications.

One challenge facing these researchers has been overcoming a loss of conductivity in stretchable electronics. Circuits made from solid metals that are on the market today can survive a small amount of stretch, but their electrical conductivity plummets by 100 times when stretched. "This conductivity loss really defeats the point of stretchable electronics," Huang said.

Huang's team has found a way to overcome these challenges. First, they created a highly porous three-dimensional structure using a polymer material, poly(dimethylsiloxane) (PDMS), that can stretch to three times its original size. Then they placed a liquid metal (EGaIn) inside the pores, allowing electricity to flow consistently even when the material is excessively stretched.

The result is a material that is both highly stretchable and extremely conductive.

"By combining a liquid metal in a porous polymer, we achieved 200 percent stretchability in a material that does not suffer from stretch," Huang said. "Once you achieve that technology, any electronic can behave like a rubber band."

The graduate student Shuodao Wang at Northwestern University is a co-author of the paper.


'/>"/>

Contact: Pat Vaughan Tremmel
p-tremmel@northwestern.edu
847-491-4892
Northwestern University
Source:Eurekalert

Related biology technology :

1. Cedars-Sinai researchers, with stem cells and global colleagues, develop Huntingtons research tool
2. Penn researchers study of phase change materials could lead to better computer memory
3. Researchers tune the strain in graphene drumheads to create quantum dots
4. WHEATON® Introduces a New Web Community for Scientists, Researchers, and Biopharmaceutical Packagers
5. Stevenage Bioscience Catalyst to Welcome Cambridge University Researchers
6. Syracuse University researchers use nanotechnology to harness power of fireflies
7. Researchers discover hereditary enzyme deficiency
8. JCVI Researchers, as Part of NIH Human Microbiome Project Consortium, Publish Papers Detailing the Variety and Abundance of Microbes Living on and in the Human Body
9. Produce Safety Researchers Awarded by ABC Research Laboratories
10. CNIO researchers describe a new target for developing anti-angiogenic and anti-tumoral therapies
11. U of S researchers create powerful new tool for research and drug development
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:8/18/2017)... ... August 18, 2017 , ... OAI, ... Semiconductor, MEMS, and Microfluidics Industries, announces the new Model 800E front and backside, ... in automated production mask aligners. OAI has already received and installed several ...
(Date:8/16/2017)... ... August 16, 2017 , ... ... the Fluidnatek® Electrospinning and Electrospraying line of nanofiber ... from table-top equipment for the lab to fully automated pilot plants and ...
(Date:8/16/2017)... , ... August 16, 2017 , ... ... U.S. Food and Drug Administration (FDA) inspection at our Dilworth, MN site. The ... was issued. This inspection was conducted as part of a routine Bioresearch Monitoring ...
(Date:8/15/2017)... ... , ... Kapstone Medical is proud to announce that it has ... and inventors develop and safeguard their latest innovations. The company has grown from ... of clients in the United States and around the world. , Company Founder ...
Breaking Biology Technology:
(Date:3/29/2017)...  higi, the health IT company that operates the ... , today announced a Series B investment from ... The new investment and acquisition accelerates higi,s strategy to ... population health activities through the collection and workflow integration ... collects and secures data today on behalf of over ...
(Date:3/24/2017)... Research and Markets has announced the addition of the ... Industry Forecast to 2025" report to their offering. ... The Global Biometric Vehicle Access ... 15.1% over the next decade to reach approximately $1,580 million by ... and forecasts for all the given segments on global as well ...
(Date:3/22/2017)... 21, 2017 Optimove , provider ... retailers such as 1-800-Flowers and AdoreMe, today announced ... and Replenishment. Using Optimove,s machine learning algorithms, these ... and replenishment recommendations to their customers based not ... of customer intent drawn from a complex web ...
Breaking Biology News(10 mins):