Navigation Links
Researchers create 'building block' of quanutm networks

A proof-of-concept device that could pave the way for on-chip optical quantum networks has been created by a group of researchers from the US.

Presenting the device today, 8 February, in the Institute of Physics and German Physical Society's New Journal of Physics, it has been described as the "building block of future quantum networks."

In an optical quantum network, information is carried between points by photons the basic unit of light. There is a huge potential for this type of network in the field of quantum computing and could enable computers that are millions of times faster at solving certain problems than what we are used to today.

This new device, which combines a single nitrogen-vacancy centre in diamond with an optical resonator and an optical waveguide, could potentially become the memory or the processing element of such a network.

A nitrogen-vacancy centre is a defect in the lattice structure of diamond where one of the carbon atoms is replaced by a nitrogen atom and the nearest neighbour carbon atom is missing. The nitrogen-vacancy centre has the property of photoluminescence, whereby a substance absorbs photons from a source and then subsequently emits photons.

The emitted photons are special in that they are correlated, or entangled, with the nitrogen-vacancy centre that they came from, which as the researchers state is crucial for future experiments that will look to examine this correlation. You cannot get these correlated photons from a normal light source.

In this device, the photons are produced from a nitrogen-vacancy centre within a diamond microring resonator. The nitrogen-vacancy centre is located inside the diamond resonator as it is more likely to emit photons than when it is located in the waveguide or just in plain diamond. Moreover, the photons emitted in the resonator are easier to couple into an on-chip waveguide.

The cotton bud-shaped waveguide sends the photons out into a desired direction through gratings at either end.

"One of the holy grails in quantum photonics is to develop networks where optical quantum emitters are interconnected via photons," said lead author of the study Andrei Faraon.

"In this work we take the first step and demonstrate that photons the information carriers from a single nitrogen-vacancy centre can be coupled to an optical resonator and then further coupled to a photonic waveguide. We hope that multiple devices of this kind will be interconnected in a photonic network on a chip."

The study, undertaken by researchers from the California Institute of Technology, Hewlett Packard Laboratories and University of Washington, tested the device by cooling it to temperatures below 10K and shining a green laser onto the nitrogen vacancy to evoke photoluminescence.

The entire device was etched in a diamond membrane that was around 300 nanometres thick.

"The whole idea of these devices is that they are able to be produced en masse. So far the procedure for mass fabrication is still at the proof-of-concept level, so there is still plenty of work to be done to make it reliable," continued Professor Faraon.


Contact: Michael Bishop
Institute of Physics

Related biology technology :

1. Boston College researchers unique nanostructure produces novel plasmonic halos
2. EMBL-EBI researchers make DNA storage a reality
3. Researchers create method for more sensitive electrochemical sensors
4. Sustainable Valley Technology Group Provides Technology Innovation Grant To Help Researchers & Start-Ups With Funding, Business Support, Equipment & Facilities
5. Penn researchers show new level of control over liquid crystals
6. Carin Grings remains identified by researchers at Uppsala University
7. MIT researchers discover a new kind of magnetism
8. Elsevier and the Dutch Fulbright Center Start Collaboration to Support Early Career Researchers in the Netherlands
9. Penn researchers make flexible, low-voltage circuits using nanocrystals
10. Researchers improve technology to detect hazardous chemicals
11. Researchers create laser the size of a virus particle
Post Your Comments:
(Date:10/10/2017)... , Oct. 10, 2017 SomaGenics announced ... the NIH to develop RealSeq®-SC (Single Cell), expected to ... profiling small RNAs (including microRNAs) from single cells using ... highlights the need to accelerate development of approaches to ... "New techniques for measuring levels of ...
(Date:10/9/2017)... , Oct. 9, 2017  BioTech Holdings ... mechanism by which its ProCell stem cell therapy ... limb ischemia.  The Company, demonstrated that treatment with ... of limbs saved as compared to standard bone ... molecule HGF resulted in reduction of therapeutic effect.  ...
(Date:10/9/2017)... ... October 09, 2017 , ... The Giving Tree Wellness Center ... the needs of consumers who are incorporating medical marijuana into their wellness and ... , As operators of two successful Valley dispensaries, The Giving Tree’s two founders, ...
(Date:10/7/2017)... Seattle, WA (PRWEB) , ... ... ... the industry leader in Hi-C-based genomic technologies, launched its ProxiMeta™ Hi-C metagenome ... the ProxiMeta Hi-C kit and accompanying cloud-based bioinformatics software to perform Hi-C ...
Breaking Biology Technology:
(Date:3/30/2017)... NEW YORK , March 30, 2017 ... by type (physiological and behavioral), by technology (fingerprint, AFIS, ... recognition, voice recognition, and others), by end use industry ... travel and immigration, financial and banking, and others), and ... Europe , Asia Pacific ...
(Date:3/27/2017)... , March 27, 2017  Catholic Health ... and Management Systems Society (HIMSS) Analytics for achieving ... Adoption Model sm . In addition, CHS previously ... U.S. hospitals using an electronic medical record (EMR). ... its high level of EMR usage in an ...
(Date:3/23/2017)... 2017 The report "Gesture Recognition and Touchless Sensing Market ... - Global Forecast to 2022", published by MarketsandMarkets, the market is expected to ... between 2017 and 2022. Continue Reading ... ... ...
Breaking Biology News(10 mins):