Navigation Links
Researchers create atlas of transcription factor combinations
Date:3/4/2010

In a significant leap forward in the understanding of how specific types of tissue are determined to develop in mammals, an international team of scientists has succeeded in mapping the entire network of DNA-binding transcription factors and their interactions. This global network, indicating which factors can combine to determine cell fate, will be published in the March 5 issue of the journal Cell.

Transcription factors (TFs) are proteins that bind to specific DNA sequences in order to direct which genes should be turned on or off in a tissue. Tissue specificity whether embryonic tissue develops into lungs or kidneys or skin, for example is determined by how and which TFs bind to genes. Between 2,000 and 3,000 transcription factor proteins are encoded by the human genome, potentially creating more than 4 million potential protein pairings.

It has long been appreciated that different combinations of TFs are active in different tissues. But given the enormous number of TFs and potential pairings, it has been difficult to precisely identify which combinations are functional, according to principal investigator Trey Ideker, PhD, chief of the Division of Genetics at the University of California, San Diego, School of Medicine.

The integrated approach to systematically map all possible combinations of TFs in mammals has generated large data sets in both humans and mice. The complete network contains 762 human and 877 mouse interactions between TFs, indicating TF pairs that can work in combination.

"The availability of this large combinatorial network of transcription factors will provide scientists with many opportunities to study gene regulation, tissue differentiation and evolution in mammals," said Ideker, professor in the Department of Medicine and at UCSD's Jacobs School of Engineering. He added that analysis of the network shows that highly connected TFs are broadly expressed across tissues, and that roughly half of the interactions are conserved between mouse and human.

The researcher team identified nearly 1,000 different pairs of TF proteins that can be wired together, representing the blueprint of all possible combinations that direct gene expression in mammals. The work may provide researchers with the clues necessary to one day determine how stem cells can be reprogrammed into a particular organ or tissue type.


'/>"/>

Contact: Debra Kain
ddkain@ucsd.edu
619-543-6163
University of California - San Diego
Source:Eurekalert

Related biology technology :

1. From 2-trillion-degree heat, researchers create new matter -- and new questions
2. Sorting device for analyzing biological reactions puts the power of a lab in a researchers pocket
3. Researchers gain detailed insight into failing heart cells using new nano technique
4. Dramatic changes in agriculture needed as world warms and grows, researchers say
5. 4 ORNL researchers selected for Recovery Act early career funds
6. Researchers show applied electric field can significantly improve hydrogen storage properties
7. Using magnetic toys as inspiration, researchers tease out structures of self-assembled clusters
8. FDA researchers identify new MRI safety risk for patients with pacemakers
9. Researchers take the inside route to halt bleeding
10. NIST researchers put a new spin on atomic musical chairs
11. Elsevier is Re-Launching "Embase" to be a Powerful Resource Providing Deep Insights and Answers to Biomedical Researchers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/8/2016)... AskLinkerReports.com has published a report on ... Industry 2016 Market Research Report. From a basic outline of ... are all covered in the report. This report projects investment ... of the Amyloglucosidase industry. ... , , Complete ...
(Date:12/8/2016)... ... December 08, 2016 , ... Opal Kelly, a ... device-to-computer interconnect using USB or PCI Express, announced the FOMD-ACV-A4, the company's first ... a small, thin, SODIMM-style module that fits a standard 204-pin SODIMM socket for ...
(Date:12/8/2016)... Frederick, Maryland (PRWEB) , ... ... ... Inc announces the commercial launch of flexible packaging for their exceptionally ... (“SU”) disposable bag system extends RoosterBio’s portfolio of bioprocess media products engineered ...
(Date:12/8/2016)... , Dec. 8, 2016  HedgePath Pharmaceuticals, Inc. ... discovers, develops and plans to commercialize innovative therapeutics ... of common stock were approved for trading on ... trading on the OTCQX, effective today, under the ... the OTCQX market, companies must meet high financial ...
Breaking Biology Technology:
(Date:12/6/2016)... 6, 2016  Zimmer Biomet Holdings, Inc. (NYSE and SIX: ... offering of €500.0 million principal amount of its 1.414% senior ... its 2.425% senior unsecured notes due 2026. ... December 13, 2016, subject to the satisfaction of customary closing conditions.  ... The Company intends to use the ...
(Date:12/2/2016)... PUNE, India , December 1, 2016 /PRNewswire/ ... Market by Authentication type (Fingerprint, Voice), Future Technology (Iris ... Vehicle), and Region - Global Forecast to 2021", ... be USD 442.7 Million in 2016, and is ... 2021, at a CAGR of 14.06%. ...
(Date:11/29/2016)... BOSTON , Nov. 29, 2016 BioDirection, ... rapid point-of-care products for the objective detection of concussion ... the company has successfully completed a meeting with the ... company,s Tbit™ blood test Pre-Submission Package. During the meeting ... Tbit™ system as a precursor to commencement of a ...
Breaking Biology News(10 mins):