Navigation Links
Researchers capture first-ever images of atoms moving in a molecule
Date:3/7/2012

COLUMBUS, Ohio Using a new ultrafast camera, researchers have recorded the first real-time image of two atoms vibrating in a molecule.

Key to the experiment, which appears in this week's issue of the journal Nature, is the researchers' use of the energy of a molecule's own electron as a kind of "flash bulb" to illuminate the molecular motion.

The team used ultrafast laser pulses to knock one electron out of its natural orbit in a molecule. The electron then fell back toward the molecule scattered off of it, analogous to the way a flash of light scatters around an object, or a water ripple scatters in a pond.

Principal investigator Louis DiMauro of Ohio State University said that the feat marks a first step toward not only observing chemical reactions, but also controlling them on an atomic scale.

"Through these experiments, we realized that we can control the quantum trajectory of the electron when it comes back to the molecule, by adjusting the laser that launches it," said DiMauro, who is a professor of physics at Ohio State. "The next step will be to see if we can steer the electron in just the right way to actually control a chemical reaction."

A standard technique for imaging a still object involves shooting the object with an electron beam bombarding it with millions of electrons per second. The researchers' new single-electron quantum approach allowed them to image rapid molecular motion, based on theoretical developments by the paper's coauthors at Kansas State University.

A technique called laser induced electron diffraction (LIED) is commonly used in surface science to study solid materials. Here, the researchers used it to study the movement of atoms in a single molecule.

The molecules they chose to study were simple ones: nitrogen, or N2, and oxygen, or O2. N2 and O2 are common atmospheric gases, and scientists already know every detail of their structure, so these two very basic molecules made a good test case for the LIED method.

In each case, the researchers hit the molecule with laser light pulses of 50 femtoseconds, or quadrillionths of a second. They were able to knock a single electron out of the outer shell of the molecule and detect the scattered signal of the electron as it re-collided with the molecule.

DiMauro and Ohio State postdoctoral researcher Cosmin Blaga likened the scattered electron signal to the diffraction pattern that light forms when it passes through slits. Given only the diffraction pattern, scientists can reconstruct the size and shape of the slits. In this case, given the diffraction pattern of the electron, the physicists reconstructed the size and shape of the molecule that is, the locations of the constituent atoms' nuclei.

The key, explained Blaga, is that during the brief span of time between when the electron is knocked out of the molecule and when it re-collides, the atoms in the molecules have moved. The LIED method can capture this movement, "similar to making a movie of the quantum world," he added.

Beyond its potential for controlling chemical reactions, the technique offers a new tool to study the structure and dynamics of matter, he said. "Ultimately, we want to really understand how chemical reactions take place. So, long-term, there would be applications in materials science and even chemical manufacturing."

"You could use this to study individual atoms," DiMauro added, "but the greater impact to science will come when we can study reactions between more complex molecules. Looking at two atoms that's a long way from studying a more interesting molecule like a protein."


'/>"/>

Contact: Louis DiMauro
Dimauro.6@osu.edu
614-688-5726
Ohio State University
Source:Eurekalert  

Related biology technology :

1. Penn researchers build first physical metatronic circuit
2. Pitt researchers coax gold into nanowires
3. York researchers create tornados inside electron microscopes
4. Self-assembling nanorods: Berkeley Lab researchers obtain 1-, 2- and 3-D nanorod arrays and networks
5. Navy researchers investigate small-scale autonomous planetary explorers
6. Notre Dame researchers develop paint-on solar cells
7. Quantum computing has applications in magnetic imaging, say Pitt researchers
8. Researchers measure nanometer scale temperature
9. Notre Dame researchers demonstrate new DNA detection technique
10. Researchers realize high-power, narrowband terahertz source at room temperature
11. MU researchers identify key plant immune response in fight against bacteria
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers capture first-ever images of atoms moving in a molecule
(Date:6/20/2017)... , ... June 20, 2017 , ... ... discovery of antibody therapeutics from millions-diverse immune repertoires, announces launch of its new ... Diego, California. Dave Johnson, PhD, CEO of GigaGen, will present on Surge at ...
(Date:6/16/2017)... , ... June 16, 2017 , ... ... compliance and commercialization, has just announced two more sessions of its “From the ... will focus on the world of online templates for design control exercises. Led ...
(Date:6/15/2017)... ... June 15, 2017 , ... The ... an artist’s journey through creative experimentation and interdisciplinary collaboration. Feature Creep, a solo ... 22nd. An opening reception will be held at EKG, located at 3600 Market ...
(Date:6/14/2017)... Bangkok, Thailand (PRWEB) , ... June 14, 2017 ... ... Thailand Center of Excellence for Life Sciences (TCELS) announces that they’re co-hosting a ... 19-22, 2017. , BIO, the largest biotech industry gathering in the world, ...
Breaking Biology Technology:
(Date:4/13/2017)... , April 13, 2017 UBM,s Advanced Design ... will feature emerging and evolving technology through its ... Summits will run alongside the expo portion of the ... panels and demonstrations focused on trending topics within 3D ... design and manufacturing event will take place June 13-15, 2017 ...
(Date:4/11/2017)... Research and Markets has announced the addition ... their offering. ... tracking market to grow at a CAGR of 30.37% during the ... 2017-2021, has been prepared based on an in-depth market analysis with ... its growth prospects over the coming years. The report also includes ...
(Date:4/6/2017)... , April 6, 2017 ... RFID, ANPR, Document Readers, by End-Use (Transportation & Logistics, ... Facility, Oil, Gas & Fossil Generation Facility, Nuclear Power), ... Educational, Other) Are you looking for a ... sector? ...
Breaking Biology News(10 mins):