Navigation Links
Researchers capture first-ever images of atoms moving in a molecule
Date:3/7/2012

COLUMBUS, Ohio Using a new ultrafast camera, researchers have recorded the first real-time image of two atoms vibrating in a molecule.

Key to the experiment, which appears in this week's issue of the journal Nature, is the researchers' use of the energy of a molecule's own electron as a kind of "flash bulb" to illuminate the molecular motion.

The team used ultrafast laser pulses to knock one electron out of its natural orbit in a molecule. The electron then fell back toward the molecule scattered off of it, analogous to the way a flash of light scatters around an object, or a water ripple scatters in a pond.

Principal investigator Louis DiMauro of Ohio State University said that the feat marks a first step toward not only observing chemical reactions, but also controlling them on an atomic scale.

"Through these experiments, we realized that we can control the quantum trajectory of the electron when it comes back to the molecule, by adjusting the laser that launches it," said DiMauro, who is a professor of physics at Ohio State. "The next step will be to see if we can steer the electron in just the right way to actually control a chemical reaction."

A standard technique for imaging a still object involves shooting the object with an electron beam bombarding it with millions of electrons per second. The researchers' new single-electron quantum approach allowed them to image rapid molecular motion, based on theoretical developments by the paper's coauthors at Kansas State University.

A technique called laser induced electron diffraction (LIED) is commonly used in surface science to study solid materials. Here, the researchers used it to study the movement of atoms in a single molecule.

The molecules they chose to study were simple ones: nitrogen, or N2, and oxygen, or O2. N2 and O2 are common atmospheric gases, and scientists already know every detail of their structure, so these two very basic molecules made a good test case for the LIED method.

In each case, the researchers hit the molecule with laser light pulses of 50 femtoseconds, or quadrillionths of a second. They were able to knock a single electron out of the outer shell of the molecule and detect the scattered signal of the electron as it re-collided with the molecule.

DiMauro and Ohio State postdoctoral researcher Cosmin Blaga likened the scattered electron signal to the diffraction pattern that light forms when it passes through slits. Given only the diffraction pattern, scientists can reconstruct the size and shape of the slits. In this case, given the diffraction pattern of the electron, the physicists reconstructed the size and shape of the molecule that is, the locations of the constituent atoms' nuclei.

The key, explained Blaga, is that during the brief span of time between when the electron is knocked out of the molecule and when it re-collides, the atoms in the molecules have moved. The LIED method can capture this movement, "similar to making a movie of the quantum world," he added.

Beyond its potential for controlling chemical reactions, the technique offers a new tool to study the structure and dynamics of matter, he said. "Ultimately, we want to really understand how chemical reactions take place. So, long-term, there would be applications in materials science and even chemical manufacturing."

"You could use this to study individual atoms," DiMauro added, "but the greater impact to science will come when we can study reactions between more complex molecules. Looking at two atoms that's a long way from studying a more interesting molecule like a protein."


'/>"/>

Contact: Louis DiMauro
Dimauro.6@osu.edu
614-688-5726
Ohio State University
Source:Eurekalert  

Related biology technology :

1. Penn researchers build first physical metatronic circuit
2. Pitt researchers coax gold into nanowires
3. York researchers create tornados inside electron microscopes
4. Self-assembling nanorods: Berkeley Lab researchers obtain 1-, 2- and 3-D nanorod arrays and networks
5. Navy researchers investigate small-scale autonomous planetary explorers
6. Notre Dame researchers develop paint-on solar cells
7. Quantum computing has applications in magnetic imaging, say Pitt researchers
8. Researchers measure nanometer scale temperature
9. Notre Dame researchers demonstrate new DNA detection technique
10. Researchers realize high-power, narrowband terahertz source at room temperature
11. MU researchers identify key plant immune response in fight against bacteria
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers capture first-ever images of atoms moving in a molecule
(Date:2/16/2017)... LOS ANGELES , Feb. 16, 2017 /PRNewswire/ ... CAPR ), a clinical-stage biotechnology company developing first-in-class ... today announced that it has elected to terminate ... to natriuretic peptide receptor agonists, including Cenderitide. ... a strategic move as we prioritize our efforts ...
(Date:2/16/2017)... PALM BEACH, Florida , February 16, 2017 ... vastly improving with the infusion of innovative telemedicine ... patient monitoring services that are experiencing a boom ... evolve with the advancement of technologies, services and ... Technologies Inc. (OTC: RQHTF) (TSX-V: RHT), Cellectar Biosciences, ...
(Date:2/16/2017)... Feb. 16, 2017  Dermata Therapeutics, LLC, a ... treat a variety of dermatological diseases, today announced ... financing and entered into a $5 million credit ... to use the capital for general corporate purposes ... in the treatment of serious diseases treated by ...
(Date:2/16/2017)... , ... February 16, 2017 , ... ... case. Dr. Kingsley Chin, professor and Harvard trained surgeon, completed the procedure on ... performed on a 55-year-old practicing female physician suffering from degenerative disc disease with ...
Breaking Biology Technology:
(Date:2/2/2017)...  Central to its deep commitment to honor ... Japan Prize Foundation today announced the laureates of ... envelope in their respective fields of Life Sciences ... being recognized with the 2017 Japan Prize for ... to the advancement of science and technology, but ...
(Date:1/30/2017)... FRANCISCO , Jan. 30, 2017   Invitae ... the fastest growing genetic information companies, today announced that ... financial results and provide 2017 guidance on Monday, February ... conference call that day at 4:45 p.m. Eastern / ... Invitae,s management team will briefly review financial results, guidance, ...
(Date:1/25/2017)... YORK , Jan. 25, 2017 The ... Access Management (IAM) lifecycle is comprised of a ... for the purpose of maintaining digital identities and ... resources and applications. There are significant number of ... from time to time by optimizing processes and ...
Breaking Biology News(10 mins):