Navigation Links
Researchers at the University of Georgia Discover Protein is Crucial to Reproduction of Parasites Involved in Disease
Date:2/12/2009

A team of researchers at the University of Georgia led by postdoctoral associate Giel van Dooren has discovered a protein in T. gondii that is essential for the parasite's growth. The group's work points the way toward a new model system that can be used in studying other parasitic diseases and could one day lead to an effective target for drug intervention.

Athens, GA (Vocus) February 12, 2009 -- As diseases go, toxoplasmosis is a wolf in sheep's clothing. Its effects are usually mild, though infection is for life, and two out of five Americans are chronically infected. Those with compromised immune systems can, however, face serious complications. And the disease can also have serious effects on a human fetus if contracted by a mother.

The agent that causes the disease, Toxoplasma gondii, is of strong interest to scientists because it is easy to manipulate in the lab and can lead to insights about other parasitic diseases, such as malaria, that kill millions each year.

Now, a team of researchers at the University of Georgia led by postdoctoral associate Giel van Dooren has discovered a protein in T. gondii that is essential for the parasite's growth. The group's work points the way toward a new model system that can be used in studying other parasitic diseases and could one day lead to an effective target for drug intervention.

"By understanding basic cellular processes in Toxoplasma we can gain important insights into the biology of related parasites," said van Dooren.

The study was published today in the online edition of the journal Current Biology. The work took place in UGA's Center for Tropical and Emerging Global Diseases in the Franklin College of Arts and Sciences. Other authors of the paper include Boris Striepen of the CTEGD and the department of cellular biology at UGA; Sarah Rieff of the department of cellular biology; Cveta Tomova and Bruno Humbel of Utrecht University in the Netherlands; and Markus Meissner of the Heidelberg University School of Medicine in Germany.

Toxoplasma belongs to a group of parasites that contain a chloroplast-like organelle, the apicoplast. Chloroplasts are the home of photosynthesis in plants and algae and are responsible for the green color of leaves. Apicoplasts have long puzzled scientists. What does a parasite living in the brain or blood of humans have to do with a structure associated with harvesting sunlight? It turns out that the chloroplasts have additional functions, and it is these functions that the parasites require.

Since humans do not have chloroplasts, the parasite's dependence on this organelle is viewed by reseachers as an Achilles heel.

Scientists are interested in the group to which Toxoplasma belongs, the Apicomplexa, because it includes such parasites as Plasmodium, which causes malaria.   

"The apicoplast is essential for parasitic growth and must correctly divide for the organism to stay alive," said Striepen, also a senior author on the study at UGA. "Understanding more of how it works is crucial to progress in understanding how these disease processes evolve."

Toxoplasma parasites replicate by dividing into two new parasites. Each new parasite requires a new apicoplast that must divide in synchrony with the parasite. What the team showed is that a protein called DrpA is crucial to the division of the apicoplast.

DrpA belongs to a family of proteins called dynamins, which are involved in a range of cellular processes that require constriction or pinching. Tracking the evolution of dynamins, the current work suggests that cells have the ability to retool these proteins to perform novel tasks, in this case to divide the symbiotic alga that was the ancestor of the apicoplast.

The group generated a mutant cell line to disrupt DrpA function in T. gondii. Using modern genetic and microscopy techniques, they showed that when the DrpA protein is no longer functional, the apicoplast can't pinch in two, preventing new parasites from acquiring this essential organelle. It results in the death of the parasite.

"Understanding that DrpA is necessary for apicoplast fission gives researchers a new working model to understand how the causative agents of several parasitic diseases flourish in human and animal hosts," said van Dooren.

Indeed, the team's search for similar dynamin-related proteins led them to examine, in addition to T. gondii, the genomes of four other parasitic organisms.

"In each, including Plasmodium, the cause of malaria, we found the DrpA protein, suggesting a common mechanism for apicoplast division in these parasites," said Striepen.

The new system now allows researchers to study what happens when organisms lose their apicoplast organelles.

###

Read the full story at http://www.prweb.com/releases/Toxoplasmosis/Cellular_Biology/prweb2041024.htm.


'/>"/>
Source: PRWeb
Copyright©2009 Vocus, Inc.
All rights reserved

Related biology technology :

1. FDA Approves Clinical Studies of a Novel Anti-Cancer Drug Developed by Italian Researchers
2. In Analyst Interview, Cord Blood America Says Stem Cells Now Front and Center for Researchers and Investors
3. Researchers: Molecular forklifts overcome obstacle to smart dust
4. Researchers control the assembly of nanobristles into helical clusters
5. Researchers measure elusive repulsive force from quantum fluctuations
6. USC researchers derive first embryonic stem cells from rats
7. Clemson researchers advance nanoscale electromechanical sensors
8. Duke researchers coax bright white light from unexpected source
9. Pitt researchers create nontoxic clean-up method for potentially toxic nano materials
10. USC researchers print dense lattice of transparent nanotube transistors on flexible base
11. J. Craig Venter Institute Researchers Publish Significant Advance in Genome Assembly Technology
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/20/2017)... , ... February 20, 2017 , ... ... the re-launch of “Crosswalk Insight: Oncology™” (Crosswalk), a unique precision medicine knowledge visualization ... can now be accessed through Inspirata’s diagnostic cockpit and is downloadable as an ...
(Date:2/20/2017)... ... February 20, 2017 , ... PuraCath ... associated with peritoneal dialysis, announced today that it has published the result of ... in Peritoneal Dialysis International (PDI), the official Journal of the International Society ...
(Date:2/20/2017)...  Atrius Health and IBM (NYSE: IBM ... to develop a cloud based service designed to ... view of the multiple influences on an individual,s ... be designed to support shared decision making between ... nonprofit healthcare organization with 875 physicians caring for ...
(Date:2/18/2017)... ... February 17, 2017 , ... The BMT ... the Center for International Blood & Marrow Transplant Research (CIBMTR) will take place ... , The combined scientific sessions offer investigators, clinicians, laboratory technicians, clinical research ...
Breaking Biology Technology:
(Date:2/14/2017)... WINSTON-SALEM, N.C. , Feb. 14, 2017  Wake ... FRY-shlog), M.D., as its new chief executive officer (CEO). ... succeeds CEO John D. McConnell , M.D., who ... new position at the Medical Center, after leading it ... oversee the full scope of Wake Forest Baptist,s academic ...
(Date:2/10/2017)... -- Research and Markets has announced the ... Scientific and Commercial Aspects" to their offering. ... Biomarkers play ... therapy for selection of treatment as well for monitoring the ... disease in modern medicine. Biochip/microarray technologies and next generation sequencing ...
(Date:2/8/2017)... (NASDAQ: AWRE ), a leading supplier of biometrics ... and year ended December 31, 2016. Revenue ... to $6.9 million in the same quarter last year. Operating ... compared to $2.6 million in the fourth quarter of 2015. ... million, or $0.02 per diluted share, which compares to $1.8 ...
Breaking Biology News(10 mins):