Navigation Links
Researchers at Harvard and MITRE produce world's first programmable nanoprocessor
Date:2/9/2011

Cambridge, Mass. February 9, 2011 Engineers and scientists collaborating at Harvard University and the MITRE Corporation have developed and demonstrated the world's first programmable nanoprocessor.

The groundbreaking prototype computer system, described in a paper appearing today in the journal Nature, represents a significant step forward in the complexity of computer circuits that can be assembled from synthesized nanometer-scale components.

It also represents an advance because these ultra-tiny nanocircuits can be programmed electronically to perform a number of basic arithmetic and logical functions.

"This work represents a quantum jump forward in the complexity and function of circuits built from the bottom up, and thus demonstrates that this bottom-up paradigm, which is distinct from the way commercial circuits are built today, can yield nanoprocessors and other integrated systems of the future," says principal investigator Charles M. Lieber, who holds a joint appointment at Harvard's Department of Chemistry and Chemical Biology and School of Engineering and Applied Sciences.

The work was enabled by advances in the design and synthesis of nanowire building blocks. These nanowire components now demonstrate the reproducibility needed to build functional electronic circuits, and also do so at a size and material complexity difficult to achieve by traditional top-down approaches.

Moreover, the tiled architecture is fully scalable, allowing the assembly of much larger and ever more functional nanoprocessors.

"For the past 10 to 15 years, researchers working with nanowires, carbon nanotubes, and other nanostructures have struggled to build all but the most basic circuits, in large part due to variations in properties of individual nanostructures," says Lieber, the Mark Hyman Professor of Chemistry. "We have shown that this limitation can now be overcome and are excited about prospects of exploiting the bottom-up paradigm of biology in building future electronics."

An additional feature of the advance is that the circuits in the nanoprocessor operate using very little power, even allowing for their miniscule size, because their component nanowires contain transistor switches that are "nonvolatile."

This means that unlike transistors in conventional microcomputer circuits, once the nanowire transistors are programmed, they do not require any additional expenditure of electrical power for maintaining memory.

"Because of their very small size and very low power requirements, these new nanoprocessor circuits are building blocks that can control and enable an entirely new class of much smaller, lighter weight electronic sensors and consumer electronics," says co-author Shamik Das, the lead engineer in MITRE's Nanosystems Group.

"This new nanoprocessor represents a major milestone toward realizing the vision of a nanocomputer that was first articulated more than 50 years ago by physicist Richard Feynman," says James Ellenbogen, a chief scientist at MITRE.


'/>"/>

Contact: Caroline Perry
cperry@seas.harvard.edu
617-496-3815
Harvard University
Source:Eurekalert  

Related biology technology :

1. Size of airborne flu virus impacts risk, Virginia Tech researchers say
2. What a ride! Researchers take molecules for a spin
3. Practice Fusion Invites Health Researchers to Analyze This! Contest on Windows Azure
4. Columbia University researchers use nanoscale transistors to study single-molecule interactions
5. Researchers visualize herpes virus tactical maneuver
6. Thomson Reuters and ChemAxon Partner to Help Speed Drug Discovery for Life Science Researchers
7. Strange new twist: Berkeley researchers discover Möbius symmetry in metamaterials
8. Rice researchers take molecules temperature
9. Researchers create new high-performance fiber
10. Dutch royal honors for Manchester researchers
11. Virtual reality helps researchers track how brain responds to surroundings
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers at Harvard and MITRE produce world's first programmable nanoprocessor
(Date:7/18/2017)... ... , ... Sourcing custom glass or quartz parts can be a daunting task. ... execute your job can take many hours of emails, phone calls and on-line research. ... showcase the company’s capabilities and core custom categories, and enables you to start the ...
(Date:7/18/2017)... ... July 18, 2017 , ... G-CON today announced ... Trademark Office for its Patent Applications 14/858,857 and 13/669,785 both entitled Modular, Self-Contained, ... applications further expand the protection of G-CON’s R&D investments and validate the G-CON ...
(Date:7/18/2017)... ... July 18, 2017 , ... Allotrope Foundation won the 2017 ... of the Allotrope Framework for commercial use. , The Bio-IT World Best Practices ... elevate the critical role of information technology in modern biomedical research, but also ...
(Date:7/17/2017)... ... July 17, 2017 , ... Whitehouse ... testing capabilities to encompass the full series of ISO 80369 standard test procedures. ... for medical device and drug delivery systems. With this recent expansion, Whitehouse Labs ...
Breaking Biology Technology:
(Date:3/24/2017)... -- Research and Markets has announced the addition of ... - Industry Forecast to 2025" report to their offering. ... The Global Biometric Vehicle ... around 15.1% over the next decade to reach approximately $1,580 million ... estimates and forecasts for all the given segments on global as ...
(Date:3/23/2017)... DUBLIN , Mar. 23, 2017 Research ... Anti-Theft System Market Analysis & Trends - Industry Forecast to 2025" ... ... to grow at a CAGR of around 8.8% over the next ... This industry report analyzes the market estimates and forecasts for all ...
(Date:3/22/2017)... 2017 Optimove , provider of ... such as 1-800-Flowers and AdoreMe, today announced two ... Replenishment. Using Optimove,s machine learning algorithms, these features ... replenishment recommendations to their customers based not just ... customer intent drawn from a complex web of ...
Breaking Biology News(10 mins):