Navigation Links
Researchers advance scheme to design seamless integrated circuits etched on graphene
Date:10/23/2013

Researchers in electrical and computer engineering at University of California, Santa Barbara have introduced and modeled an integrated circuit design scheme in which transistors and interconnects are monolithically patterned seamlessly on a sheet of graphene, a 2-dimensional plane of carbon atoms. The demonstration offers possibilities for ultra energy-efficient, flexible, and transparent electronics.

Bulk materials commonly used to make CMOS transitors and interconnects pose fundamental challenges in continuous shrinking of their feature-sizes and suffer from increasing "contact resistance" between them, both of which lead to degrading performance and rising energy consumption. Graphene-based transistors and interconnects are a promising nanoscale technology that could potentially address issues of traditional silicon-based transistors and metal interconnects.

"In addition to its atomically thin and pristine surfaces, graphene has a tunable band gap, which can be adjusted by lithographic sketching of patterns narrow graphene ribbons can be made semiconducting while wider ribbons are metallic. Hence, contiguous graphene ribbons can be envisioned from the same starting material to design both active and passive devices in a seamless fashion and lower interface/contact resistances," explained Kaustav Banerjee, professor of electrical and computer engineering and director of the Nanoelectronics Research Lab at UCSB. Banerjee's research team also includes UCSB researchers Jiahao Kang, Deblina Sarkar and Yasin Khatami. Their work was recently published in the journal Applied Physics Letters.

"Accurate evaluation of electrical transport through the various graphene nanoribbon based devices and interconnects and across their interfaces was key to our successful circuit design and optimization," explained Jiahao Kang, a PhD student in Banerjee's group and a co-author of the study. Banerjee's group pioneered a methodology using the Non-Equilibrium Green's Function (NEGF) technique to evaluate the performance of such complex circuit schemes involving many heterojunctions. This methodology was used in designing an "all-graphene" logic circuit reported in this study.

"This work has demonstrated a solution for the serious contact resistance problem encounterd in conventional semiconductor technology by providing an innovative idea of using an all-graphene device-interconnect scheme. This will significantly simplify the IC fabrication process of graphene based nanoelectronic devices." commented Philip Kim, professor of physics at Columbia University, and a renowned scientist in the graphene world.

As reported in their study, the proposed all-graphene circuits have achieved 1.7X higher noise margins and 1-2 decades lower static power consumption over current CMOS technology. According to Banerjee, with the ongoing worldwide efforts in patterning and doping of graphene, such circuits can be realized in the near future.

"We hope that this work will encourage and inspire other researchers to explore graphene and beyond-graphene emerging 2-dimensional crystals for designing such 'band-gap engineered' circuits in the near future," added Banerjee.


'/>"/>

Contact: Melissa Van De Werfhorst
melissa@engineering.ucsb.edu
University of California - Santa Barbara
Source:Eurekalert  

Related biology technology :

1. Harvard researchers, pharma experts offer recommendations to expand access to clinical trial data
2. Virginia Tech researchers publish study on jellyfish energy consumption that will improve bio-inspired robotic designs for Navy
3. Spanish researchers sequence non-infiltrating bladder cancer exome
4. Researchers discover and treat toxic effects of ALS mutation in neurons made from patients skin cells
5. Researchers advance toward engineering wildly new genome
6. Researchers use nanoparticles to deliver vaccines to lungs
7. UCLA researchers smartphone microscope can detect a single virus, nanoparticles
8. Researchers produce nanostructures with potential to advance energy devices
9. Researchers discover breakthrough technique that could make electronics smaller and better
10. GridGain Enables Portland State Univ. Researchers to Push Boundaries of Science
11. Reproducing natures chemistry: Researchers alter molecular properties in a new way
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers advance scheme to design seamless integrated circuits etched on graphene
(Date:12/8/2016)... CARDIFF, UK (PRWEB) , ... December 08, 2016 ... ... high precision light to control cells — optogenetics — is key to exciting ... state of the art, spatially patterned light projected via free-space optics stimulates small, ...
(Date:12/8/2016)... , December 8, 2016 ... expanded its customisable SureSeq™ NGS panel range with the launch ... fast and cost-effective study of variants in familial hypercholesterolemia (FH). ... variation (CNV) detection on a single small panel and allows ... content. This includes all exons for LDLR , ...
(Date:12/8/2016)... Frederick, Maryland (PRWEB) , ... ... ... Inc announces the commercial launch of flexible packaging for their exceptionally ... (“SU”) disposable bag system extends RoosterBio’s portfolio of bioprocess media products engineered ...
(Date:12/8/2016)...  Soligenix, Inc. (OTCQB: SNGX) (Soligenix or the ... and commercializing products to treat rare diseases where ... the long-term follow-up data from its Phase 2 ... Defense Regulator (IDR), in the treatment of oral ... undergoing chemoradiation therapy (CRT).  The additional 12-month safety ...
Breaking Biology Technology:
(Date:11/17/2016)... -- Global Market Watch: Primarily supported by ownership ... and Academics) market is to witness a value of US$37.1 ... highest Compounded Annual Growth Rate (CAGR) of 10.75% is foreseen ... period 2014-2020. North America is not ... Europe at 9.56% respectively. Report Focus: ...
(Date:11/16/2016)... , Nov. 16, 2016 Sensory ... experience and security for consumer electronics, and ... financial and retail industry, today announced a global ... convenient way to authenticate users of mobile banking ... TrulySecure™ software which requires no specialized ...
(Date:11/15/2016)... Research and Markets has announced the addition of the ... their offering. ... The global bioinformatics market ... 6.21 Billion in 2016, growing at a CAGR of 21.1% during ... is driven by the growing demand for nucleic acid and protein ...
Breaking Biology News(10 mins):