Navigation Links
'Radio wave cooling' offers new twist on laser cooling
Date:9/14/2007

Visible and ultraviolet laser light has been used for years to cool trapped atomsand more recently larger objectsby reducing the extent of their thermal motion. Now, applying a different form of radiation for a similar purpose, physicists at the National Institute of Standards and Technology (NIST) have used radio waves to dampen the motion of a miniature mechanical oscillator containing more than a quadrillion atoms, a cooling technique that may open a new window into the quantum world using smaller and simpler equipment.

Described in a forthcoming issue of Physical Review Letters,* this demonstration of radio-frequency (RF) cooling of a relatively large object may offer a new tool for exploring the elusive boundary where the familiar rules of the everyday, macroscale world give way to the bizarre quantum behavior seen in the smallest particles of matter and light. There may be technology applications as well: the RF circuit could be made small enough to be incorporated on a chip with tiny oscillators, a focus of intensive research for use in sensors to detect, for example, molecular forces.

The NIST experiments used an RF circuit to cool a 200 x 14 x 1,500 micrometer silicon cantilevera tiny diving board affixed at one end to a chip and similar to the tuning forks used in quartz crystal watchesvibrating at 7,000 cycles per second, its natural resonant frequency. Scientists cooled it from room temperature (about 23 degrees C, or 73 degrees F) to -228 C (-379 F). Other research groups have used optical techniques to chill micro-cantilevers to lower temperatures, but the RF technique may be more practical in some cases, because the equipment is smaller and easier to fabricate and integrate into cryogenic systems. By extending the RF method to higher frequencies at cryogenic temperatures, scientists hope eventually to cool a cantilever to its ground state near absolute zero (-273 C or -460 F) , where it would be essentially motionless and quantum behavior should emerge.

Laser cooling is akin to using the kinetic energy of millions of ping-pong balls (particles of light) striking a rolling bowling ball (such as an atom) to slow it down. The RF cooling technique, lead author Kenton Brown says, is more like pushing a child on a swing slightly out of synch with its back-and-forth motion to reduce its arc. In the NIST experiments, the cantilevers mechanical motion is reduced by the force created between two electrically charged plates, one of which is the cantilever, which store energy like electrical capacitors. In the absence of any movement, the force would be stable, but in this case, it is modulated by the cantilever vibrations. The stored energy takes some time to change in response to the cantilevers movement, and this delay pushes the cantilever slightly out of synch, damping its motion.


'/>"/>

Contact: Laura Ost
laura.ost@nist.gov
303-497-4880
National Institute of Standards and Technology (NIST)
Source:Eurekalert

Related biology technology :

1. The DIG System Nonradioactive Automated High-Throughput In Situ Hybridization: a Powerful Tool for Functional Genomics Research
2. The DIG System Nonradioactive and Highly Sensitive Detection of Nucleic Acids
3. A simple method to sequence from bacterial colonies using [a-33P] radiolabeled ddNTPs and Thermo Sequenase
4. Development of Radioligand Binding Assays for the Motilin Receptor Using ScreenReady Targets.
5. Georgia healthcare system to install GEs radio frequency ID
6. See how they run: Radio ads and Google
7. TomoTherapys 100th radiology system reaches public sector
8. Satellite radio can promote your national brand
9. Radiology advance points way to non-invasive brain-cancer treatment
10. Madison music featured on Internet radio station
11. Motorolas iRadio beams music through your cell phone
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/9/2016)... Three-Year Initiative Supports Next Generation of ... in Life-Changing Camp Experiences ... affect the lives of children born with rare diseases, as well ... ) is announcing a new initiative designed to positively affect the ... future of rare disease care. --> To mark the ...
(Date:2/8/2016)... BIOREM Inc. (TSXV: BRM) ("Biorem" or "the Company") today announced ... companies in the TSX Venture 50 TM . ... TSX Venture Exchange, in each of five major industry sectors ... life sciences, diversified industries and technology – based on a ... market cap growth, trading volume and analyst coverage. All data ...
(Date:2/8/2016)... February 8, 2016 ... Limited, an innovation-driven oncology company developing next generation ... toxic, today announced that chairman emeritus of Tata ... in the company as part of the first ... existing investors Navam Capital and Aarin Capital. ...
(Date:2/8/2016)... 2016  BioElectronics Corporation (OTC Pink: BIEL), the ... that it is responding to a notice of ... and Exchange Commission posted on the agency website.  ... the Board of BioElectronics Corporation and the Edward ... The Fuqua School of Business, Duke University.   ...
Breaking Biology Technology:
(Date:1/20/2016)... JOSE, Calif. , Jan. 20, 2016 /PRNewswire/ ... developer of human interface solutions, today announced sampling ... controller solution for wearables and small screen applications ... such as printers. Supporting round and rectangular shapes, ... S1423 offers excellent performance with moisture on screen, ...
(Date:1/13/2016)... January 13, 2016 ... addition of the  "India Biometrics Authentication ... Forecast (2015-2020)"  report to their ... has announced the addition of the  ... - Estimation & Forecast (2015-2020)" ...
(Date:1/8/2016)... , January 8, 2016 ... market and WorldVentures ® , a privately held leading ... an Inc. 5000 fastest-growing company announced that ... investment of $2 million in Nxt-ID to develop a ... on Nxt-ID,s Wocket ® , a unique smart wallet ...
Breaking Biology News(10 mins):