Navigation Links
Quantum leap for phonon lasers
Date:2/22/2010

Physicists have taken major step forward in the development of practical phonon lasers, which emit sound in much the same way that optical lasers emit light. The development should lead to new, high-resolution imaging devices and medical applications. Just as optical lasers have been incorporated into countless, ubiquitous devices, a phonon laser is likely to be critical to a host of as yet unimaginable applications.

Two separate research groups, one located in the US and the other in the UK, are reporting dramatic advances in the development of phonon lasers in the current issue of Physical Review Letters. The papers are highlighted with a Viewpoint by Jacob Khurgin of Johns Hopkins University in the February 22 issue of Physics (http://physics.aps.org).

Light and sound are similar in various ways: they both can be thought of in terms of waves, and they both come in quantum mechanical units (photons in the case of light, and phonons in the case of sound). In addition, both light and sound can be produced as random collections of quanta (consider the light emitted by a light bulb) or orderly waves that travel in coordinated fashion (as is the case for laser light). Many physicists believed that the parallels imply that lasers should be as feasible with sound as they are with light. While low frequency sound in the range that humans can hear (up to 20 kilohertz) is easy to produce in either a random or orderly fashion, things get more difficult at the terahertz (trillions of hertz) frequencies that are the regime of potential phonon laser applications. The problem stems from the fact that sound travels much slower than light, which in turn means that the wavelength of sound is much shorter than light at a given frequency. Instead of resulting in orderly, coherent phonon lasers, miniscule structures that can produce terahertz sound tend to emit phonons randomly.

Researchers at Caltech have overcome the problem by assembling a pair of microscopic cavities that only permit specific frequencies of phonons to be emitted. They can also tune the system to emit phonons of different frequencies by changing the relative separation of the microcavities.

The group from the UK's University of Nottingham took a different approach. They built their device out of electrons moving through a series of structures known as quantum wells. As an electron hops from one quantum well to the next, it produces a phonon. So far, the Nottingham group has not demonstrated a true phonon lasing, but their system amplifies high-frequency sound in a way that suggests it could be it a key component in future phonon laser designs.

Regardless of the approach, the recent developments are landmark breakthroughs on the route to practical phonon lasers. Phonon lasers would have to go a long way to match the utility of their optical cousins, but the many applications that physicists have in mind already, including medical imaging, high precision measurement devices, and high-energy focused sound, suggest that sound-based lasers may have a future nearly as bright as light lasers.


'/>"/>

Contact: James Riordon
riordon@aps.org
301-209-3238
American Physical Society
Source:Eurekalert  

Related biology technology :

1. Seeing the quantum in chemistry: JILA scientists control chemical reactions of ultracold molecules
2. NIH Director Francis Collins to Speak at National Press Club February 26 on A New Era of Quantum Leaps in Biomedical Research
3. NISTs second quantum logic clock based on aluminum ion is now worlds most precise clock
4. Turning down the noise in quantum data storage
5. Golden ratio discovered in a quantum world
6. Straightening messy correlations with a quantum comb
7. NIST demonstrates universal programmable quantum processor
8. Quantum computer chips now 1 step closer to reality
9. U-M physicists create first atomic-scale map of quantum dots
10. Physicists at UC Santa Barbara make discovery in quantum mechanics
11. Researchers unite to distribute quantum keys
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Quantum leap for phonon lasers
(Date:4/27/2016)... ... 27, 2016 , ... The Pittcon Organizing Committee is pleased to announce that ... volunteer member of Committee since 1987. Since then, he has served in a number ... was chairman for both the program and exposition committees. In his professional career, Dr. ...
(Date:4/27/2016)... ... April 27, 2016 , ... ... to announce the appointment of John Tilton as Chief Commercial Officer.  Mr. Tilton ... one of the founding commercial leaders responsible for the commercialization of multiple orphan ...
(Date:4/27/2016)... (PRWEB) , ... April 27, 2016 , ... Global ... the GSCG Advisory Board. Ross is the founder of GSCG affiliate Kimera Labs in ... Miami, where he studied hematopoietic stem cell transplantation for hematologic disorders and the suppression ...
(Date:4/26/2016)... Calif. (PRWEB) , ... April 27, 2016 , ... ... office of Lewis Roca Rothgerber Christie LLP as an associate in the firm’s ... U.S. and international electrical, mechanical and electromechanical patent applications. He has an electrical ...
Breaking Biology Technology:
(Date:3/22/2016)... 22, 2016 According ... Market for Consumer Industry by Type (Image, Motion, ... (Communication & IT, Entertainment, Home Appliances, & ... to 2022", published by MarketsandMarkets, the market ... reach USD 26.76 Billion by 2022, at ...
(Date:3/18/2016)... LONDON , March 18, 2016 ... Established Suppliers of Biometrics, ICT, Manned & Unmanned Vehicles, Physical ... & security companies in the border security market and ... and Europe has led ... your companies improved success. --> defence & ...
(Date:3/15/2016)... 2016 Yissum Research Development Company of ... of the Hebrew University, announced today the formation of ... of various human biological indicators. Neteera Technologies has completed ... private investors. ... of electromagnetic emissions from sweat ducts, enables reliable and ...
Breaking Biology News(10 mins):