Navigation Links
Quantum device traps, detects and manipulates the spin of single electrons

BUFFALO, N.Y. -- A novel device, developed by a team led by University at Buffalo engineers, simply and conveniently traps, detects and manipulates the single spin of an electron, overcoming some major obstacles that have prevented progress toward spintronics and spin-based quantum computing.

Published online this week in Physical Review Letters, the research paper brings closer to reality electronic devices based on the use of single spins and their promise of low-power/high-performance computing.

The task of manipulating the spin of single electrons is a hugely daunting technological challenge that has the potential, if overcome, to open up new paradigms of nanoelectronics, said Jonathan P. Bird, Ph.D., professor of electrical engineering in the UB School of Engineering and Applied Sciences and principal investigator on the project.

In this paper, we demonstrate a novel approach that allows us to easily trap, manipulate and detect single-electron spins, in a scheme that has the potential to be scaled up in the future into dense, integrated circuits.

While several groups have recently reported the trapping of a single spin, they all have done so using quantum dots, nanoscale semiconductors that can only demonstrate spin trapping in extremely cold temperatures, below 1 degree Kelvin.

The cooling of devices or computers to that temperature is not routinely achievable, Bird said, and it makes systems far more sensitive to interference.

The UB group, by contrast, has trapped and detected spin at temperatures of about 20 degrees Kelvin, a level that Bird says should allow for the development of a viable technology, based on this approach.

In addition, the system they developed requires relatively few logic gates, the components in semiconductors that control electron flow, making scalability to complex integrated circuits very feasible.

The UB researchers achieved success through their innovative use of quantum point contacts: narrow, nanoscale constrictions that control the flow of electrical charge between two conducting regions of a semiconductor.

It was recently predicted that it should be possible to use these constrictions to trap single spins, said Bird. In this paper, we provide evidence that such trapping can, indeed, be achieved with quantum point contacts and that it may also be manipulated electrically.

The system they developed steers the electrical current in a semiconductor by selectively applying voltage to metallic gates that are fabricated on its surface.

These gates have a nanoscale gap between them, Bird explained, and it is in this gap where the quantum point contact forms when voltage is applied to them.

By varying the voltage applied to the gates, the width of this constriction can be squeezed continuously, until it eventually closes completely, he said.

As we increase the charge on the gates, this begins to close that gap, explained Bird, allowing fewer and fewer electrons to pass through until eventually they all stop going through. As we squeeze off the channel, just before the gap closes completely, we can detect the trapping of the last electron in the channel and its spin.

The trapping of spin in that instant is detected as a change in the electrical current flowing through the other half of the device, he explained.

One region of the device is sensitive to what happens in the other region, he said.

Now that the UB researchers have trapped and detected single spin, the next step is to work on trapping and detecting two or more spins that can communicate with each other, a prerequisite for spintronics and quantum computing.


Contact: Ellen Goldbaum
716-645-5000 x1415
University at Buffalo

Related biology technology :

1. Improved Quantitative Selectivity of Clenbuterol in Human Urine using High Resolution on the TSQ Quantum Mass Spectrometer
2. Bioanalytical Method Intraday Validation for the Quantitation of Paroxetine in Bovine Plasma using the TSQ Quantum Mass Spectrometer
3. Photoluminescence Spectroscopy of Quantum Dots, monitored by the Spex FluoroMax
4. Quantitation of Acrylamide in Food Samples on the Finnigan TSQ Quantum Discovery by LC/APCI-MS/MS
5. Increased Analyte Sensitivity through the Utility of Enhanced Mass-Resolution on the FinniganTSQ Quantum Discovery
6. Comparison of Performance Characteristics of Different Biolistic Devices
7. Measurement of proteasome inhibition in live cells in Molecular Devices microplate fluorometers
8. TomoTherapy to sell medical devices in India
9. Security concerns grow with mobile tech devices
10. Am I spoiled if I expect well-designed mobile devices?
11. Midwest retains dominant role in 2005 world medical device market
Post Your Comments:
(Date:10/12/2017)... ... October 12, 2017 , ... ... announced today that they have entered into a multiyear collaboration to identify and ... researchers with additional tools for gene editing across all applications. , Under the ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... President Andi Purple announced Dr. Suneel I. Sheikh, the co-founder, CEO and chief ... ), Inc. has been selected for membership in ARCS Alumni Hall of ...
(Date:10/11/2017)... 11, 2017  VMS BioMarketing, a leading provider of patient ... Clinical Nurse Educator (CNE) network, which will launch this week. ... among health care professionals to enhance the patient care experience ... and other health care professionals to help women who have ... ...
(Date:10/10/2017)... ... October 10, 2017 , ... San Diego-based team building and cooking events ... announced today. The bold new look is part of a transformation to increase ... a significant growth period. , It will also expand its service offering from its ...
Breaking Biology Technology:
(Date:5/16/2017)...  Veratad Technologies, LLC ( ), an innovative ... verification solutions, announced today they will participate as a ... thru May 17, 2017, in Washington D.C.,s ... Identity impacts the lives of billions ... evolving digital world, defining identity is critical to nearly ...
(Date:4/24/2017)... 24, 2017 Janice Kephart , ... Identity Strategy Partners, LLP (IdSP) , today issues ... President Trump,s March 6, 2017 Executive Order: ... vetting can be instilled with greater confidence, enabling ... all refugee applications are suspended by until at ...
(Date:4/17/2017)... 17, 2017 NXT-ID, Inc. (NASDAQ: NXTD ... filing of its 2016 Annual Report on Form 10-K on Thursday ... ... available in the Investor Relations section of the Company,s website at ... website at . 2016 Year Highlights: ...
Breaking Biology News(10 mins):