Navigation Links
Quantum device traps, detects and manipulates the spin of single electrons
Date:9/28/2007

BUFFALO, N.Y. -- A novel device, developed by a team led by University at Buffalo engineers, simply and conveniently traps, detects and manipulates the single spin of an electron, overcoming some major obstacles that have prevented progress toward spintronics and spin-based quantum computing.

Published online this week in Physical Review Letters, the research paper brings closer to reality electronic devices based on the use of single spins and their promise of low-power/high-performance computing.

The task of manipulating the spin of single electrons is a hugely daunting technological challenge that has the potential, if overcome, to open up new paradigms of nanoelectronics, said Jonathan P. Bird, Ph.D., professor of electrical engineering in the UB School of Engineering and Applied Sciences and principal investigator on the project.

In this paper, we demonstrate a novel approach that allows us to easily trap, manipulate and detect single-electron spins, in a scheme that has the potential to be scaled up in the future into dense, integrated circuits.

While several groups have recently reported the trapping of a single spin, they all have done so using quantum dots, nanoscale semiconductors that can only demonstrate spin trapping in extremely cold temperatures, below 1 degree Kelvin.

The cooling of devices or computers to that temperature is not routinely achievable, Bird said, and it makes systems far more sensitive to interference.

The UB group, by contrast, has trapped and detected spin at temperatures of about 20 degrees Kelvin, a level that Bird says should allow for the development of a viable technology, based on this approach.

In addition, the system they developed requires relatively few logic gates, the components in semiconductors that control electron flow, making scalability to complex integrated circuits very feasible.

The UB researchers achieved success through their innovative use of quantum point contacts: narrow, nanoscale constrictions that control the flow of electrical charge between two conducting regions of a semiconductor.

It was recently predicted that it should be possible to use these constrictions to trap single spins, said Bird. In this paper, we provide evidence that such trapping can, indeed, be achieved with quantum point contacts and that it may also be manipulated electrically.

The system they developed steers the electrical current in a semiconductor by selectively applying voltage to metallic gates that are fabricated on its surface.

These gates have a nanoscale gap between them, Bird explained, and it is in this gap where the quantum point contact forms when voltage is applied to them.

By varying the voltage applied to the gates, the width of this constriction can be squeezed continuously, until it eventually closes completely, he said.

As we increase the charge on the gates, this begins to close that gap, explained Bird, allowing fewer and fewer electrons to pass through until eventually they all stop going through. As we squeeze off the channel, just before the gap closes completely, we can detect the trapping of the last electron in the channel and its spin.

The trapping of spin in that instant is detected as a change in the electrical current flowing through the other half of the device, he explained.

One region of the device is sensitive to what happens in the other region, he said.

Now that the UB researchers have trapped and detected single spin, the next step is to work on trapping and detecting two or more spins that can communicate with each other, a prerequisite for spintronics and quantum computing.


'/>"/>

Contact: Ellen Goldbaum
goldbaum@buffalo.edu
716-645-5000 x1415
University at Buffalo
Source:Eurekalert

Related biology technology :

1. Improved Quantitative Selectivity of Clenbuterol in Human Urine using High Resolution on the TSQ Quantum Mass Spectrometer
2. Bioanalytical Method Intraday Validation for the Quantitation of Paroxetine in Bovine Plasma using the TSQ Quantum Mass Spectrometer
3. Photoluminescence Spectroscopy of Quantum Dots, monitored by the Spex FluoroMax
4. Quantitation of Acrylamide in Food Samples on the Finnigan TSQ Quantum Discovery by LC/APCI-MS/MS
5. Increased Analyte Sensitivity through the Utility of Enhanced Mass-Resolution on the FinniganTSQ Quantum Discovery
6. Comparison of Performance Characteristics of Different Biolistic Devices
7. Measurement of proteasome inhibition in live cells in Molecular Devices microplate fluorometers
8. TomoTherapy to sell medical devices in India
9. Security concerns grow with mobile tech devices
10. Am I spoiled if I expect well-designed mobile devices?
11. Midwest retains dominant role in 2005 world medical device market
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2017)... Myrtle Beach, SC (PRWEB) , ... April 26, ... ... for the mind, has teamed up with NASA to showcase the future of ... NASA’s Space Launch System (SLS) rocket and Orion spacecraft and includes a guest ...
(Date:4/26/2017)... ... April 26, 2017 , ... NextSteps 2017, NetDimensions’ annual global ... this May on the following dates: , ?    London, UK from May 10-11, ... Learning and Performance Institute will be the opening keynote speaker at the ...
(Date:4/25/2017)... ... April 25, 2017 , ... ... of Common Lisp (CL) development tools, and market leader for Semantic Graph ... performance enhancements now available within the most effective system for developing and deploying ...
(Date:4/25/2017)... ... April 25, 2017 , ... Covalent Metrology ... Analytical Services unit provides high-quality data to clients, both faster and ... of receipt. There are no price premiums, and customers are welcome to participate ...
Breaking Biology Technology:
(Date:4/13/2017)... India , April 13, 2017 According to ... Proofing, Identity Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, ... MarketsandMarkets™, the IAM Market is expected to grow from USD 14.30 Billion ... Growth Rate (CAGR) of 17.3%. ... MarketsandMarkets ...
(Date:4/11/2017)... Research and Markets has announced the addition of the "Global ... ... at a CAGR of 30.37% during the period 2017-2021. ... based on an in-depth market analysis with inputs from industry experts. ... the coming years. The report also includes a discussion of the ...
(Date:4/11/2017)... MELBOURNE, Florida , April 11, 2017 ... "Company"), a security technology company, announces the appointment of independent ... John Bendheim to its Board of Directors, furthering the ... ... behalf of NXT-ID, we look forward to their guidance and ...
Breaking Biology News(10 mins):