Navigation Links
Quantum computer chips now 1 step closer to reality
Date:10/15/2009

COLUMBUS, Ohio -- In the quest for smaller, faster computer chips, researchers are increasingly turning to quantum mechanics -- the exotic physics of the small.

The problem: the manufacturing techniques required to make quantum devices have been equally exotic.

That is, until now.

Researchers at Ohio State University have discovered a way to make quantum devices using technology common to the chip-making industry today.

This work might one day enable faster, low-power computer chips. It could also lead to high-resolution cameras for security and public safety, and cameras that provide clear vision through bad weather.

Paul Berger, professor of electrical and computer engineering and professor of physics at Ohio State University, and his colleagues report their findings in an upcoming issue of IEEE Electron Device Letters.

The team fabricated a device called a tunneling diode using the most common chip-making technique, called chemical vapor deposition.

"We wanted to do this using only the tools found in the typical chip-makers toolbox," Berger said. "Here we have a technique that manufacturers could potentially use to fabricate quantum devices directly on a silicon chip, side-by-side with their regular circuits and switches."

The quantum device in question is a resonant interband tunneling diode (RITD) -- a device that enables large amounts of current to be regulated through a circuit, but at very low voltages. That means that such devices run on very little power.

RITDs have been difficult to manufacture because they contain dopants -- chemical elements -- that don't easily fit within a silicon crystal.

Atoms of the RITD dopants antimony or phosphorus, for example, are large compared to atoms of silicon. Because they don't fit into the natural openings inside a silicon crystal, the dopants tend to collect on the surface of a chip.

"It's like when you're playing Tetris and you have a big block raining down, and only a small square to fit it in. The block has to sit on top," Berger said. "When you're building up layers of silicon, these dopants don't readily fit in. Eventually, they clump together on top of the chip."

In the past, researchers have tried adding the dopants while growing the silicon wafer one crystal layer at a time -- using a slow and expensive process called molecular beam epitaxy, a method which is challenging for high-volume manufacturing. That process also creates too many defects within the silicon.

Berger discovered that RITD dopants could be added during chemical vapor deposition, in which a gas carries the chemical elements to the surface of a wafer many layers at a time. The key was determining the right reactor conditions to deliver the dopants to the silicon, he found.

"One key is hydrogen," he said. "It binds to the silicon surface and keeps the dopants from clumping. So you don't have to grow chips at 320 degrees Celsius [approximately 600 degrees Fahrenheit] like you do when using molecular beam epitaxy. You can actually grow them at a higher temperature like 600 degrees Celsius [more than 1100 degrees Fahrenheit] at a lower cost, and with fewer crystal defects."

Tunneling diodes are so named because they exploit a quantum mechanical effect known as tunneling, which lets electrons pass through thin barriers unhindered.

In theory, interband tunneling diodes could form very dense, very efficient micro-circuits in computer chips. A large amount of data could be stored in a small area on a chip with very little energy required.

Researchers judge the usefulness of tunneling diodes by the abrupt change in the current densities they carry, a characteristic known as "peak-to-valley ratio." Different ratios are appropriate for different kinds of devices. Logic circuits such as those on a computer chip are best suited by a ratio of about 2.

The RITDs that Berger's team fabricated had a ratio of 1.85.

"We're close, and I'm sure we can do better," he said.

He envisions his RITDs being used for ultra-low-power computer chips operating with small voltages and producing less wasted heat.

"Chip makers today are having a great difficulty boosting performance in each generation, so they pack chips with more and more circuitry, and end up generating a lot of heat," Berger said. "That's why a laptop computer is often too hot to actually sit atop your lap. Soon, their heat output will rival that of a nuclear reactor per unit volume."

"That's why moving to quantum devices will be a game-changer."

RITDs could form high-resolution detectors for imaging devices called focal plane arrays. These arrays operate at wavelengths beyond the human eye and can permit detection of concealed weapons and improvised explosive devices. They can also provide vision through rain, snow, fog, and even mild dust storms, for improved airplane and automobile safety, Berger said. Medical imaging of cancerous tumors is another potential application.


'/>"/>

Contact: Paul R. Berger
pberger@ieee.org
614-247-6235
Ohio State University
Source:Eurekalert

Related biology technology :

1. Imaging quantum entanglement
2. Yale scientists make 2 giant steps in advancement of quantum computing
3. Quantum device traps, detects and manipulates the spin of single electrons
4. Argonne researcher studies what makes quantum dots blink
5. Harvard University engineers demonstrate quantum cascade laser nanoantenna
6. Stanford researchers hear the sound of quantum drums
7. Physicists discover how fundamental particles lose track of quantum mechanical properties
8. Quantum computing breakthrough arises from unknown molecule
9. Physicists tweak quantum force, reducing barrier to tiny devices
10. Light touch: Controlling the behavior of quantum dots
11. First tunable, noiseless amplifier may boost quantum computing, communications
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/27/2016)... ... April 27, 2016 , ... Cambridge Semantics, the leading provider of ... that it has been named to The Silicon Review’s “20 Fastest Growing Big Data ... Cambridge Semantics serves the needs of end users facing some of the most complex ...
(Date:4/27/2016)... (PRWEB) , ... April 27, 2016 , ... ... Touch screen mobile devices with fingerprint recognition for secure access, voice recognition ... only a few ways consumers are interacting with biometrics technology today. But ...
(Date:4/27/2016)... ... April 27, 2016 , ... The Board of Directors ... of John Tilton as Chief Commercial Officer.  Mr. Tilton joined Biohaven from Alexion ... commercial leaders responsible for the commercialization of multiple orphan drug indications. Mr. ...
(Date:4/27/2016)... ... April 27, 2016 , ... ... preclinical PET (Positron Emission Tomography) and MRI (Magnetic Resonance Imaging) in existing third-party ... and testing novel treatments in small animal subjects. Simultaneous PET/MRI imaging offers a ...
Breaking Biology Technology:
(Date:3/14/2016)... , Allemagne, March 14, 2016 ... http://www.apimages.com ) - --> - Renvoi : ... - --> --> ... solutions biométriques, fournit de nouveaux lecteurs d,empreintes digitales ... LF10 de DERMALOG sera utilisé pour produire des ...
(Date:3/10/2016)... March 10, 2016   Unisys Corporation (NYSE: ... Protection (CBP) is testing its biometric identity solution at ... to help identify certain non-U.S. citizens leaving the ... test, designed to help determine the efficiency and accuracy of ... February and will run until May 2016. --> ...
(Date:3/8/2016)... 8, 2016   Valencell , the leading ... it has secured $11M in Series D financing. ... new venture fund being launched by UAE-based financial ... existing investors TDF Ventures and WSJ Joshua Fund. ... its triple-digit growth and accelerate its pioneering innovation ...
Breaking Biology News(10 mins):