Navigation Links
Putting the squeeze on an old material could lead to 'instant on' electronic memory

The technology of storing electronic information from old cassette tapes to shiny laptop computers has been a major force in the electronics industry for decades.

Low-power, high-efficiency electronic memory could be the long-term result of collaborative research led by Cornell materials scientist Darrell Schlom. The research, to be published April 17 in the journal Science (Vol. 324 No. 5925), involves taking a well-known oxide, strontium titanate, and depositing it on silicon in such a way that the silicon squeezes it into a special state called ferroelectric a result that could prove key to next-generation memory devices.

Ferroelectric materials are found today in "smart cards" used in many subways and ski resorts. The credit card-sized devices are made with such materials as lead zirconium titanate or strontium bismuth tantalate, which can instantly switch between different memory states using very little electric power. A tiny microwave antenna inside the card, when waved before a reader, reveals and updates stored information.

For more than half a century, scientists have wanted to use ferroelectric materials in transistors, which could lead to "instant-on" computing no more rebooting the operating system or accessing memory slowly from the hard drive. No one has yet achieved a ferroelectric transistor that works.

"Adding new functionality to transistors can lead to improved computing and devices that are lower power, higher speed and more convenient to use," said Schlom, professor of materials science and engineering. "Several hybrid transistors have been proposed specifically with ferroelectrics in mind. By creating a ferroelectric directly on silicon, we are bringing this possibility closer to realization."

Ordinarily, strontium titanate in its relaxed state is not ferroelectric at any temperature. The researchers have demonstrated, however, that extremely thin films of the oxide just a few atoms thick become ferroelectric when squeezed atom by atom to match the spacing between the atoms of underlying silicon.

"Changing the spacing between atoms by about 1.7 percent drastically alters the properties of strontium titanate and turns it into a material with useful memory properties," said Long-Qing Chen, professor of materials science and engineering at Pennsylvania State University, a member of the research team whose calculations predicted the observed behavior five years ago.

Schlom called the work a good example of "theory-driven research."

"From various predictions, some dating back nearly a decade, we knew exactly what we were after, but it took our team years to achieve and demonstrate the predicted effect," he said.

The researchers described successfully growing the strontium titanate on top of silicon the semiconductor found in virtually all electronic devices using molecular-beam epitaxy, a technique akin to atomic spray painting.

"The technological implications are staggering," said Jeremy Levy, professor of physics and astronomy at the University of Pittsburgh, the research team member whose measurements showed the thin strontium titanate layers on silicon to be ferroelectric.


Contact: Blaine Friedlander
Cornell University

Related biology technology :

1. Putting a new spin on current research
2. Putting stem cell research on the fast track
3. U of T physicists squeeze light to quantum limit
4. Biomoda, Inc. (BMOD) SqueezeTrigger Price is $0.27. Approximately 1 Million Shares Shorted Since November 2006 According to Research Report
5. Connecting Materials Science With Biology, K-State Engineers Create DNA Sensors That Could Identify Cancer Using Material Only One Atom Thick
6. Researchers create catalysts for use in hydrogen storage materials
7. How Long Will the Economic Downturn Affect the Dental Biomaterials Market?
8. MIT: New material could lead to faster chips
9. New organic material may speed Internet access
10. Quantum dots and nanomaterials: Ingredients for better lighting and more reliable power
11. Nanotechnologists gain powerful new materials probe
Post Your Comments:
(Date:11/25/2015)... , Nov. 25, 2015  PharmAthene, Inc. (NYSE ... has adopted a stockholder rights plan (Rights Plan) in ... operating loss carryforwards (NOLs) under Section 382 of the ... --> PharmAthene,s use of its NOLs could ... change" as defined in Section 382 of the Code. ...
(Date:11/25/2015)... 25, 2015  Neurocrine Biosciences, Inc. (Nasdaq: NBIX ... and CEO of Neurocrine Biosciences, will be presenting at ... New York . .   ... approximately 5 minutes prior to the presentation to download ... presentation will be available on the website approximately one ...
(Date:11/25/2015)... November 25, 2015 The ... is a professional and in-depth study on the ...      (Logo: ) , ... industry including definitions, classifications, applications and industry chain ... the international markets including development trends, competitive landscape ...
(Date:11/24/2015)... , Nov. 24, 2015 Cepheid (NASDAQ: ... be speaking at the following conference, and invited investors ... York, NY      Tuesday, December 1, 2015 at ... York, NY      Tuesday, December 1, 2015 at ... Healthcare Conference, New York, NY ...
Breaking Biology Technology:
(Date:11/20/2015)... OXFORD, Connecticut , November 20, 2015 ... biometric authentication company focused on the growing mobile commerce ... its CEO, Gino Pereira , was recently interviewed ... The interview will air on this weekend on ... Bloomberg Latin America . --> NXTD ) ...
(Date:11/17/2015)... -- Paris from 17 th ... Paris from 17 th until 19 th ... has invented the first combined scanner in the world which ... surface. Until now two different scanners were required: one for ... on the same surface. This innovation is an ideal ...
(Date:11/12/2015)... -- A golden retriever that stayed healthy despite having the ... a new lead for treating this muscle-wasting disorder, report ... MIT and Harvard and the University of São Paolo ... Cell, pinpoints a protective gene that boosts muscle ... Boston Children,s lab of Lou Kunkel , PhD, ...
Breaking Biology News(10 mins):