Navigation Links
Purdue leads center to simulate behavior of micro-electromechanical systems
Date:3/7/2008

WEST LAFAYETTE, Ind. - The National Nuclear Security Administration has awarded a $17 million cooperative agreement for a research center at Purdue University's Discovery Park to develop advanced simulations for commercial and defense applications, Purdue officials announced Friday (March 7).

The center will focus on the behavior and reliability of miniature switches and is one of five new Centers of Excellence chosen by the NNSA.

About 35 researchers at Purdue, including faculty members, software professionals and students, will be involved in the new Center for Prediction of Reliability, Integrity and Survivability of Microsystems, or PRISM. The University of Illinois, Urbana-Champaign, and the University of New Mexico will collaborate in the center.

"The center takes advantage of Purdue's interdisciplinary strengths and considerable expertise in computational modeling and nanotechnology," Purdue President France A. Crdova said.

The center will advance the emerging field of "predictive science," or applying computational simulations to predict the behavior of complex systems, said Jayathi Y. Murthy, director of the new center and a professor in Purdue's School of Mechanical Engineering.

The new centers will develop advanced science and engineering models and software for simulations needed to predict the reliability and durability of "micro-electromechanical systems," or MEMS. Researchers also will develop methods associated with the emerging disciplines of verification and validation and uncertainty quantification.

"The goal of these emerging disciplines is to enable scientists to make precise statements about the degree of confidence they have in their simulation-based predictions," Murthy said.

PRISM will be based at the Birck Nanotechnology Center and also is affiliated with the Energy Center, both in Purdue's Discovery Park.

The center is funded with $17 million over five years from the NNSA's Office of Advanced Simulation and Computing through its Predictive Science Academic Alliance Program. Purdue and its partners also are providing $4.2 million in matching funds for the center.

PRISM and the other four newly selected centers will focus on unclassified applications of interest to NNSA and its three national laboratories: Lawrence Livermore, Los Alamos and Sandia.

Under PRISM, the miniature switches, called MEMS devices, are being created to replace conventional switches and other electronic components. MEMS are machines that combine electronic and mechanical components on a microscopic scale.

The MEMS are far lighter and smaller than the conventional technology and could be manufactured in large quantities at low cost, Murthy said.

"Research is needed, however, to improve the reliability, ruggedness and durability of the devices," she said.

The new simulations will make it possible to accurately predict how well the MEMS devices would stand up to the rigors of varying and extreme environments and how long they would last in the field. Devices in many environments must withstand crushing gravitational forces, temperature extremes, radiation and shocks from impact.

"Reliability pertains to long-term performance," Murthy said. "Improving the integrity and survivability relate to the fact that MEMS get used in very adverse conditions. You don't want the MEMS to fail before the systems in which they are embedded are deployed. MEMS have many potential important applications in civilian and defense applications."

For example, the switches can be used to turn radio signals on and off for a variety of purposes in national defense and for routing satellite communications. Potential civilian applications include cell phones and other telecommunications products, automotive sensors, and liquid-crystal-display projectors for large screens.

The technology will make it possible to reduce the size of switching equipment from several inches to 1 millimeter, or thousandth of a meter.

"Even though MEMS have a big size, weight and cost advantage, they are not really reliable enough yet," Murthy said.

A major challenge is creating "multiscale" simulations that bridge a broad range of size and time scales associated with objects measured in nanometers, or billionths of a meter, to objects measured in millimeters.

One problem is that matter behaves differently on the scale of nanometers than it does in the ordinary macro world of meters. Another complication is that important failure phenomena in MEMS may occur over a range of time scales, ranging from billionths of a second to several months.

The center will focus on creating simulations to unite these sizes and time scales, capturing the entire workings of a design, from its nanometer-scale layout to its macro-scale features. The research will draw on expertise and facilities affiliated with Purdue's Network for Computational Nanotechnology, based at the Birck Nanotechnology Center, and the Rosen Center for Advanced Computing, a division of Purdue's Office of Information Technology. The NNSA's national laboratory personnel will be advisers and collaborators in this research effort.

The research will concentrate on specific types of MEMS, called radio frequency MEMS, and particularly a device called a metal-dielectric contacting MEMS. The tiny switches have a length of about 400 microns, or millionths of a meter, or roughly four times the width of a human hair. The devices, switches used to turn on and off radio frequency signals, are made of a thin metal membrane located on top of a dielectric contact.

During operation, the membrane snaps on top of the contact, altering an electronic property called capacitance and switching off the radio signal, in effect turning off the device.

Researchers in the center will create a simulation system called MEMOSA to accurately model the devices. The metal membrane constantly hitting the contact forms cracks and defects. Whereas the defects are formed in regions a few hundred nanometers long, components in the device are 100 times larger, complicating the job of creating accurate simulations.

In addition to multiscale considerations, another complicating factor is that device operation involves the interaction of mechanical, electrical and thermal factors. The devices are made of various types of materials, which also have to be incorporated into simulations.

Creating the simulations will require the expertise of researchers from materials science, electrical engineering, mechanical engineering, aeronautics and astronautics, mathematics, computer science, and computer architecture.

The researchers will have access to unclassified supercomputers at the three NNSA national labs to run the large-scale simulations. These systems will be at the petascale computing level.

"Petascale computing is the leading edge, the fastest computing that will be possible in the near future," Murthy said. "Right now, the state of the art is terascale computing, a thousand times slower."

Researchers also will use computer resources on the nanoHUB, an Internet-based science gateway that provides access to advanced simulation and software tools. The nanoHub is part of the Network for Computational Nanotechnology at Purdue. Facilities and hardware provided by Purdue's Office of Information Technology also will be utilized extensively.


'/>"/>

Contact: Phillip Fiorini
pfiorini@purdue.edu
765-496-3133
Purdue University
Source:Eurekalert  

Related biology technology :

1. Purdue creating wireless sensors to monitor bearings in jet engines
2. Merial to Screen Chimerix Chemical Library for Animal Health Drug Leads
3. Oak Ridge leads DOE INCITE effort in 2008
4. Murray Leads Delegation in Securing $2.1 Million for Proton Therapy Center
5. International Substance Detection Firm IDenta To Release New Lead Test Kit - Rash Of Toy Incidents Leads Company To Enter New Marketplace
6. Epeius Biotechnologies Leads With Keynote Address on the Advent of Pathotropic Medicine for Cancer at the Global Pharma R&D Summit Conference in Boston MA
7. Finesse Solutions Expands by Opening Sales and Service Centers
8. Winnick Family Clinical Research Center Celebrates 6th Anniversary
9. Center for Molecular Medicine Partners with AviaraDx to Offer New Cancer Tests to Aid Physicians in Personalizing Treatment
10. MultiVu Video Feed: Johnson & Johnson Diabetes Institute, LLC Launches New Training Center to Improve Community-Based Diabetes Care
11. Center for Molecular Medicine Among First to Offer New FDA-Approved Test to Aid in Treatment of Prostate Cancer
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Purdue leads center to simulate behavior of micro-electromechanical systems
(Date:12/7/2016)... the association for the California life ... st Century Cures legislation in Congress. The bill passed ... and in the Senate on December 7 by a 94-5 ... , president & CEO of Biocom: "Today, Congress ... patients around the world. The measure culminates three years of ...
(Date:12/7/2016)... AUSTIN, Texas , Dec. 7, 2016 /PRNewswire/ ... development of revolutionary immunogene therapy treatments, today announced ... healthcare practice within a leading strategic communications and ... strategic communications program. The program will combine investor ... the objective of raising the profile of Genprex ...
(Date:12/7/2016)... December 7, 2016 Regen BioPharma Inc. ... Journal of Molecular Sciences a team of scientists in ... have demonstrated that expression of NR2F6 in patients with ... for NR2F6 in patient,s cervical cancer tissue as well as ... "This is an interesting study and the first that ...
(Date:12/7/2016)... ... 07, 2016 , ... JULABO USA is inviting visitors to ... website has been designed to provide the best user-friendly experience coupled with intuitive ... product information, read educational industry content as well as share information across all ...
Breaking Biology Technology:
(Date:11/14/2016)... Inc. ("xG" or the "Company") (Nasdaq: XGTI, XGTIW), a ... challenging operating environments, announced its results for the third ... conference call to discuss these results on November 15, ... Key Recent Accomplishments The ... Vislink Communication Systems. The purchase is expected to close ...
(Date:6/22/2016)...  The American College of Medical Genetics and Genomics was ... as one of the fastest-growing trade shows during the Fastest ... in Las Vegas . ... in each of the following categories: net square feet of ... attendees. The 2015 ACMG Annual Meeting was ranked 23 out ...
(Date:6/21/2016)... VANCOUVER, British Columbia , June 21, 2016 ... been appointed to the new role of principal ... has been named the director of customer development. ... , NuData,s chief technical officer. The moves reflect ... development teams in response to high customer demand ...
Breaking Biology News(10 mins):