Navigation Links
Proteins shine a brighter light on cellular processes

Scientists have designed a molecule which, in living cells, emits turquoise light three times brighter than possible until recently. This improves the sensitivity of cellular imaging, a technique where biological processes inside a living organism are imaged at high resolution. The results have been published in Nature Communications on 20 March 2012.

The lead author of the publication is Antoine Royant from the Institut de Biologie Structurale (CNRS/CEA/University Joseph-Fourier) in Grenoble. The team also comprised scientists from the Universities of Amsterdam and Oxford and from the European Synchrotron Radiation Facility (ESRF) in Grenoble.

Cyan fluorescent proteins (CFPs) are very popular in cell biology where they are used to make visible, like in a movie, processes inside a living cell or changes in the shape of large biological molecules. Since the early 1990s, fluorescent proteins have become one of the most important tools used in the biosciences and have helped the observation of previously invisible processes such as the development of nerve cells in the brain or how cancer cells spread. The 2008 Nobel Prize in Chemistry crowned their discovery and rapid development.

CFPs allow mapping of many processes in living cells when they can be attached to a protein involved in an interaction or a conformational change. The CFP inside the cell, and thus the target of the observation, is localised by illuminating the cell with blue light which makes the fluorescent protein emit light of a characteristic colour, which is cyan for CFPs. However, these molecules have long suffered from a weak fluorescence level, converting merely 36% of the incoming blue into cyan light.

To achieve higher brightness, and with it improved sensitivity of fluorescent imaging, the scientists based in France, led by Antoine Royant, teamed up with colleagues from the Netherlands and the United Kingdom.

First, using highly brilliant X-ray beams at the ESRF, the teams from Grenoble and Oxford uncovered subtle details of how CFPs store incoming energy and retransmit it as fluorescent light: they produced tiny crystals of many different improved CFPs and resolved their molecular structures. These structures revealed a subtle process near the so-called chromophore, the light-emitting complex inside the CFPs, whose fluorescence efficiency could be modulated by the environment. "We could understand the function of individual atoms within CFPs and pinpoint the part of the molecule that needed to be modified to increase the fluorescence yield" says David von Stetten from the ESRF.

In parallel to this work, the Amsterdam team led by Theodorus Gadella used an innovative screening technique to study hundreds of modified CFP molecules, measuring their fluorescence lifetimes under the microscope to identify which had improved properties.

The result of this rational design is a new CFP, called mTurquoise2. By combining structural and cellular biology efforts, the researchers managed to show that mTurquoise2 has a fluorescence efficiency of 93%, unmatched for this type of proteins.

The new molecule will allow life scientists to study protein-protein interactions in living cells with unprecedented sensitivity. High sensitivity matters in processes where only a few proteins are involved and signals are weak, and in fast reactions where the time available for accumulating fluorescent light is short.

"With the new protein, many studies can now be performed with levels of accuracy and detail that were impossible yesterday. Moreover, thanks to this novel approach taking into account the structural dynamics of the protein, scientists now hope to design improved fluorescent proteins emitting light of different colours for use in other applications" concludes Antoine Royant.


Contact: Claus Habfast
European Synchrotron Radiation Facility

Related biology technology :

1. Scientists use light to control proteins
2. DSM and Crucell Sign Agreement with Bioceros to Serve as Pre-Approved Cell Line Generation Partner of PER.C6(R) Cell Line Proteins
3. Intrinsic Bioprobes, Inc. Enters into a $1.27M Contract with the National Cancer Institute to Develop Multiplex Mass Spectrometric Immunoassays for Detection of Low Abundance Cancer-Related Proteins
4. Assay Designs(TM), Inc. Announces Release of First Available Product for Multiplex Analysis of Heat Shock Proteins
5. OriGene Launches 5,000 Purified Human Proteins from HEK293 Cells
6. Transgenomic and Power3 Medical Report Identification of Abnormal Serum Proteins in Parkinsons Disease
7. Making bacteria make useful proteins
8. Researchers prolong the plasma half-life of biopharmaceutical proteins
9. Promega HaloTag Protein Purification System Makes it Easier to Purify Difficult-to-Express Proteins
10. RIKEN Plant Science Center Research Reveals the Proteins That Help Plants Keep Time
11. Therapeutic Proteins Inc. Completes First Independent, Dedicated Biosimilars Manufacturing Facility in U.S.
Post Your Comments:
Related Image:
Proteins shine a brighter light on cellular processes
(Date:11/24/2015)... ... November 24, 2015 , ... The Academy of Model Aeronautics (AMA), ... MultiGP, also known as Multirotor Grand Prix, to represent the First–Person View (FPV) racing ... AMA members have embraced this type of racing and several new model aviation pilots ...
(Date:11/24/2015)... QUEBEC CITY , Nov. 24, 2015 /PRNewswire/ ... (the "Company") announced today that the remaining 11,000 ... Common Share Purchase Warrants (the "Series B Warrants") ... agreement were exercised on November 23, 2015, which ... Common Shares.  After giving effect to the issuance ...
(Date:11/24/2015)... ... November 24, 2015 , ... Creation Technologies would like ... to Deloitte's 2015 Technology Fast 500 list of the fastest growing companies in ... Class II medical device that speeds up orthodontic tooth movement by as much ...
(Date:11/24/2015)... INCLINE VILLAGE, Nev. , Nov. 24, 2015  PDL ... John P. McLaughlin , the company,s president and chief ... Piper Jaffray Healthcare Conference next week in New ... and will occur on Tuesday, December 1, 2015 at 9:30 ... and Presentations." Please connect to the website at least 15 ...
Breaking Biology Technology:
(Date:10/26/2015)... and LAS VEGAS , ... Nok Labs , an innovator in modern authentication and ... today announced the launch of its latest version of ... platform enabling organizations to use standards-based authentication that supports ... Nok S3 Authentication Suite is ideal for organizations deploying ...
(Date:10/23/2015)... California , October 23, 2015 ... (SMI) announce a mobile plug and play integration of ... real-world tasks SensoMotoric Instruments (SMI) present ... wearable solutions for eye tracking and physiological data registration. ... SMI Eye Tracking Glasses 2w and physiological ...
(Date:10/22/2015)... 2015 About fingerprint biometrics ... individual with the database to identify and verify an ... loop. Pattern-based algorithms are used to match an individual,s ... was introduced in 1986, which is being used by ... criminal. Technavio,s analysts forecast the global fingerprint ...
Breaking Biology News(10 mins):