Navigation Links
Proteins shine a brighter light on cellular processes
Date:3/20/2012

Scientists have designed a molecule which, in living cells, emits turquoise light three times brighter than possible until recently. This improves the sensitivity of cellular imaging, a technique where biological processes inside a living organism are imaged at high resolution. The results have been published in Nature Communications on 20 March 2012.

The lead author of the publication is Antoine Royant from the Institut de Biologie Structurale (CNRS/CEA/University Joseph-Fourier) in Grenoble. The team also comprised scientists from the Universities of Amsterdam and Oxford and from the European Synchrotron Radiation Facility (ESRF) in Grenoble.

Cyan fluorescent proteins (CFPs) are very popular in cell biology where they are used to make visible, like in a movie, processes inside a living cell or changes in the shape of large biological molecules. Since the early 1990s, fluorescent proteins have become one of the most important tools used in the biosciences and have helped the observation of previously invisible processes such as the development of nerve cells in the brain or how cancer cells spread. The 2008 Nobel Prize in Chemistry crowned their discovery and rapid development.

CFPs allow mapping of many processes in living cells when they can be attached to a protein involved in an interaction or a conformational change. The CFP inside the cell, and thus the target of the observation, is localised by illuminating the cell with blue light which makes the fluorescent protein emit light of a characteristic colour, which is cyan for CFPs. However, these molecules have long suffered from a weak fluorescence level, converting merely 36% of the incoming blue into cyan light.

To achieve higher brightness, and with it improved sensitivity of fluorescent imaging, the scientists based in France, led by Antoine Royant, teamed up with colleagues from the Netherlands and the United Kingdom.

First, using highly brilliant X-ray beams at the ESRF, the teams from Grenoble and Oxford uncovered subtle details of how CFPs store incoming energy and retransmit it as fluorescent light: they produced tiny crystals of many different improved CFPs and resolved their molecular structures. These structures revealed a subtle process near the so-called chromophore, the light-emitting complex inside the CFPs, whose fluorescence efficiency could be modulated by the environment. "We could understand the function of individual atoms within CFPs and pinpoint the part of the molecule that needed to be modified to increase the fluorescence yield" says David von Stetten from the ESRF.

In parallel to this work, the Amsterdam team led by Theodorus Gadella used an innovative screening technique to study hundreds of modified CFP molecules, measuring their fluorescence lifetimes under the microscope to identify which had improved properties.

The result of this rational design is a new CFP, called mTurquoise2. By combining structural and cellular biology efforts, the researchers managed to show that mTurquoise2 has a fluorescence efficiency of 93%, unmatched for this type of proteins.

The new molecule will allow life scientists to study protein-protein interactions in living cells with unprecedented sensitivity. High sensitivity matters in processes where only a few proteins are involved and signals are weak, and in fast reactions where the time available for accumulating fluorescent light is short.

"With the new protein, many studies can now be performed with levels of accuracy and detail that were impossible yesterday. Moreover, thanks to this novel approach taking into account the structural dynamics of the protein, scientists now hope to design improved fluorescent proteins emitting light of different colours for use in other applications" concludes Antoine Royant.


'/>"/>

Contact: Claus Habfast
claus.habfast@esrf.fr
33-476-882-128
European Synchrotron Radiation Facility
Source:Eurekalert  

Related biology technology :

1. Scientists use light to control proteins
2. DSM and Crucell Sign Agreement with Bioceros to Serve as Pre-Approved Cell Line Generation Partner of PER.C6(R) Cell Line Proteins
3. Intrinsic Bioprobes, Inc. Enters into a $1.27M Contract with the National Cancer Institute to Develop Multiplex Mass Spectrometric Immunoassays for Detection of Low Abundance Cancer-Related Proteins
4. Assay Designs(TM), Inc. Announces Release of First Available Product for Multiplex Analysis of Heat Shock Proteins
5. OriGene Launches 5,000 Purified Human Proteins from HEK293 Cells
6. Transgenomic and Power3 Medical Report Identification of Abnormal Serum Proteins in Parkinsons Disease
7. Making bacteria make useful proteins
8. Researchers prolong the plasma half-life of biopharmaceutical proteins
9. Promega HaloTag Protein Purification System Makes it Easier to Purify Difficult-to-Express Proteins
10. RIKEN Plant Science Center Research Reveals the Proteins That Help Plants Keep Time
11. Therapeutic Proteins Inc. Completes First Independent, Dedicated Biosimilars Manufacturing Facility in U.S.
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Proteins shine a brighter light on cellular processes
(Date:6/23/2017)... IA (PRWEB) , ... June 23, 2017 , ... Biova, ... Henig, Ph.D. has joined Biova’s Board of Directors. Dr. Henig will bring a wealth ... Dr. Henig has served as the Chief Technical and Scientific Officer of four major ...
(Date:6/22/2017)... (PRWEB) , ... June 21, 2017 , ... ... attracting and hiring top executive talent in the life sciences industry, today announces ... Manufacturing company. The partnership takes full advantage of Beaker’s expertise in executive ...
(Date:6/22/2017)... ... June 22, 2017 , ... For the months of May ... Spotlight series on “Cell Therapy Regulation” for its regenerative medicine followship. ... the unique regulatory challenges of stem cell medical research. , Stem cell clinical ...
(Date:6/20/2017)... Hill, CT (PRWEB) , ... June 20, 2017 ... ... support, today announced that the CTNext board of directors has formed a Higher ... by a working group composed of institution presidents and other high-ranking representatives from ...
Breaking Biology Technology:
(Date:3/30/2017)... , March 30, 2017 Trends, opportunities and ... and behavioral), by technology (fingerprint, AFIS, iris recognition, facial ... and others), by end use industry (government and law ... financial and banking, and others), and by region ( ... , Asia Pacific , and the ...
(Date:3/24/2017)... , March 24, 2017 The Controller General of ... Mr. Abdulla Algeen have received the prestigious international IAIR Award ... Continue Reading ... ... and Deputy Controller Abdulla Algeen (small picture on the right) have received ...
(Date:3/22/2017)... , March 21, 2017   Neurotechnology , ... recognition technologies, today announced the release of the ... which provides improved facial recognition using up to ... a single computer. The new version uses deep ... accuracy, and it utilizes a Graphing Processing Unit ...
Breaking Biology News(10 mins):