Navigation Links
Process holds promise for production of synthetic gasoline
Date:12/2/2013

A chemical system developed by researchers at the University of Illinois at Chicago can efficiently perform the first step in the process of creating syngas, gasoline and other energy-rich products out of carbon dioxide.

A novel "co-catalyst" system using inexpensive, easy to fabricate carbon-based nanofiber materials efficiently converts carbon dioxide to carbon monoxide, a useful starting-material for synthesizing fuels. The findings have been published online in advance of print in the journal Nature Communications.

"I believe this can open a new field for the design of inexpensive and efficient catalytic systems for the many researchers already working with these easily manipulated advanced carbon materials," says Amin Salehi-Khojin, UIC professor of mechanical and industrial engineering and principal investigator on the study.

Researchers have spent decades trying to find an efficient, commercially viable way to chemically "reduce," or lower the oxidation state, of carbon dioxide. The UIC researchers approached the problem in a new way.

Although reducing carbon dioxide is a two-step process, chemists had commonly used a single catalyst, Salehi-Khojin said. He and his colleagues experimented with using different catalysts for each step.

In previous work, Salehi-Khojin used an ionic liquid to catalyze the first step of the reaction, and silver for the final reduction to carbon monoxide. The co-catalyst system was more efficient than single-catalyst carbon dioxide reduction systems, he said.

But silver is expensive. So he and his coworkers set out to see if a relatively new class of metal-free catalysts graphitic carbon structures doped with other reactive atoms might work in place of the silver.

They tried a common structural material, carbon nanofibers, which was doped with nitrogen, as a substitute for silver to catalyze the second step.

When these carbon materials are used as catalysts, the doping atoms, most often nitrogen, drive the reduction reaction. But, through careful study of this particular reaction, the researchers found that it was not the nitrogen that was the catalyst.

"It was the carbon atom sitting next to the dopant that was responsible," said Mohammad Asadi, a UIC graduate student who is one of two first-authors of the study.

"We were very surprised at first," Asadi said.

But as they continued to characterize the reaction it became clear not only that carbon was catalyzing the reaction, but that the co-catalyst system was more efficient than silver, "showing substantial synergistic effects," Asadi said.

Bijandra Kumar, UIC research scholar and the other first-author of the paper, said the team "uncovered the hidden mechanism" of the co-catalyzed reaction, which has "opened up a lot of options for designing inexpensive and efficient catalyst system for carbon dioxide conversion."

"Further, one can imagine that using atomically-thin, two-dimensional graphene nano-sheets, which have extremely high surface area and can easily be designed with dopant atoms like nitrogen, we can develop even far more efficient catalyst systems," Kumar said.

"If the reaction happened on the dopant, we would not have much freedom in terms of structure," said Salehi-Khojin. In that case, little could be done to increase the efficiency or stability of the reaction.

But with the reaction happening on the carbon, "we have enormous freedom" to use these very advanced carbon materials to optimize the reaction, he said.

The researchers hope that their research leads to commercially viable processes for the production of syngas and even gasoline from carbon dioxide.


'/>"/>

Contact: Jeanne Galatzer-Levy
jgala@uic.edu
312-996-1583
University of Illinois at Chicago
Source:Eurekalert

Related biology technology :

1. Biogas Consortium Using Genedata Selector for Metagenomics-based Process Optimization
2. Convey Computer Announces New Hybrid-Core Coprocessor to Accelerate Data-Intensive Applications
3. Bonnie Tweedy’s New Series Teaches Stages of Grief Process
4. Cato Research Presents at Korea-Maryland, USA BIO EXPO, Drug Development Process and Regulatory Approaches
5. BioProcessing Solutions Alliance Wins Million Veteran Program Genotyping Contract
6. NPL leads research project to help deliver 10x faster computer processing speeds
7. The BioProcess International October Issue - Now Available in Print, Digital and Mobile App Editions
8. Sanofi Adopts Genedata Biologics for Integrated Biopharma R&D Process Support
9. New Fluid Handling Sourcebook from Cole-Parmer Offers Solutions from Lab to Process
10. The Great E2 Hand Soap Challenge Asks Food Processors and Food Handlers: How Good is the E2 Hand Soap You’re Currently Using?
11. Clinverse’s ClinPay Automated Solution Streamlines Investigator Payment Process for a Biotechnology Innovator
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/12/2016)... SOUTH PLAINFIELD, N.J. , Feb. 12, 2016 ... today announced the second annual STRIVE (Strategies to ... for Duchenne muscular dystrophy (DMD). STRIVE provides funds ... collaborative programs that will make meaningful contributions to ... education or fostering development of future patient advocates. ...
(Date:2/11/2016)... SAN DIEGO, Feb. 11, 2016  Neurocrine Biosciences, Inc. (NASDAQ: ... year ended December 31, 2015. --> ... reported a net loss of $29.3 million, or $0.34 loss per ... loss per share for the same period in 2014. For the ... of $88.9 million, or $1.05 loss per share, as compared to ...
(Date:2/11/2016)...  Bioethics International, a not-for-profit organization focused on the ethics ... made accessible to patients around the world, today announced that ... publication of the Good Pharma Scorecard an ... as one of BMJ Open ,s ,Most Popular Articles, ... most frequently read. Ed Sucksmith , assistant editor ...
(Date:2/11/2016)... ... February 11, 2016 , ... ... on the development and manufacture of biopharmaceuticals and therapeutics, announces an agreement ... 2016 BioProcess International Awards – Recognizing Excellence in the People, Organizations and ...
Breaking Biology Technology:
(Date:1/22/2016)... January 22, 2016 ... addition of the  "Global Behavioral Biometric ... --> http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ) has ... Behavioral Biometric Market 2016-2020"  report to ... and Markets ( http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ) has announced ...
(Date:1/21/2016)... --> ... report "Emotion Detection and Recognition Market by Technology (Bio-Sensors, NLP, ... Voice Recognition and Others), Services, Application Areas, End ... published by MarketsandMarkets, the global Emotion Detection and ... Billion by 2020, at a CAGR of 31.9%, ...
(Date:1/20/2016)... , Jan. 20, 2016   MedNet Solutions ... the entire spectrum of clinical research, is pleased to ... MedNet,s significant achievements are the result of the company,s ... iMedNet eClinical , it,s comprehensive, easy-to-use and ... --> Key MedNet growth achievements in ...
Breaking Biology News(10 mins):