Navigation Links
Princeton engineers make breakthrough in ultra-sensitive sensor technology
Date:3/21/2011

Princeton researchers have invented an extremely sensitive sensor that opens up new ways to detect a wide range of substances, from tell-tale signs of cancer to hidden explosives.

The sensor, which is the most sensitive of its kind to date, relies on a completely new architecture and fabrication technique developed by the Princeton researchers. The device boosts faint signals generated by the scattering of laser light from a material placed on it, allowing the identification of various substances based on the color of light they reflect. The sample could be as small as a single molecule.

The technology is a major advance in a decades-long search to identify materials using Raman scattering, a phenomena discovered in the 1920s by an Indian physicist, Chandrasekhara Raman, where light reflecting off an object carries a signature of its molecular composition and structure.

"Raman scattering has enormous potential in biological and chemical sensing, and could have many applications in industry, medicine, the military and other fields," said Stephen Y. Chou, the professor of electrical engineering who led the research team. "But current Raman sensors are so weak that their use has been very limited outside of research. We've developed a way to significantly enhance the signal over the entire sensor and that could change the landscape of how Raman scattering can be used."

Chou and his collaborators, electrical engineering graduate students, Wen-Di Li and Fei Ding, and post-doctoral fellow, Jonathan Hu, published a paper on their innovation in February in the journal Optics Express. The research was funded by the Defense Advance Research Projects Agency.

In Raman scattering, a beam of pure one-color light is focused on a target, but the reflected light from the object contains two extra colors of light. The frequency of these extra colors are unique to the molecular make-up of the substance, providing a potentially powerful method to determine the identity of the substance, analogous to the way a finger print or DNA signature helps identify a person.

Since Raman first discovered the phenomena a breakthrough that earned him Nobel Prize engineers have dreamed of using it in everyday devices to identify the molecular composition and structures of substances, but for many materials the strength of the extra colors of reflected light was too weak to be seen even with the most sophisticated laboratory equipment.

Researchers discovered in the 1970s that the Raman signals were much stronger if the substance to be identified is placed on a rough metal surface or tiny particles of gold or silver. The technique, known as surface enhanced Raman scattering (SERS), showed great promise, but even after four decades of research has proven difficult to put to practical use. The strong signals appeared only at a few random points on the sensor surface, making it difficult to predict where to measure the signal and resulting in a weak overall signal for such a sensor.

Abandoning the previous methods for designing and manufacturing the sensors, Chou and his colleagues developed a completely new SERS architecture: a chip studded with uniform rows of tiny pillars made of metals and insulators.

One secret of the Chou team's design is that their pillar arrays are fundamentally different from those explored by other researchers. Their structure has two key components: a cavity formed by metal on the top and at the base of each pillar; and metal particles of about 20 nanometers in diameter, known as plasmonic nanodots, on the pillar wall, with small gaps of about 2 nanometers between the metal components.

The small particles and gaps significantly boost the Raman signal. The cavities serve as antennae, trapping light from the laser so it passes the plasmonic nanodots multiple times to generate the Raman signal rather than only once. The cavities also enhance the outgoing Raman signal.

The Chou's team named their new sensor "disk-coupled dots-on-pillar antenna-array" or D2PA, for short.

So far, the chip is a billion times (109) more sensitive than was possible without SERS boosting of Raman signals and the sensor is uniformly sensitive, making it more reliable for use in sensing devices. Such sensitivity is several orders of magnitude higher than the previously reported.

Already, researchers at the U.S. Naval Research Laboratory are experimenting with a less sensitive chip to explore whether the military could use the technology pioneered at Princeton for detecting chemicals, biological agents and explosives.

In addition to being far more sensitive than its predecessors, the Princeton chip can be manufactured inexpensively at large sizes and in large quantities. This is due to the easy-to-build nature of the sensor and a new combination of two powerful nanofabrication technologies: nanoimprint, a method that allows tiny structures to be produced in cookie-cutter fashion; and self-assembly, a technique where tiny particles form on their own. Chou's team has produced these sensors on 4-inch wafers (the basis of electronic chips) and can scale the fabrication to much larger wafer size.

"This is a very powerful method to identify molecules," Chou said. "The combination of a sensor that enhances signals far beyond what was previously possible, that's uniform in its sensitivity and that's easy to mass produce could change the landscape of sensor technology and what's possible with sensing."


'/>"/>

Contact: Chris Emery
cemery@princeton.edu
609-258-4597
Princeton University, Engineering School
Source:Eurekalert  

Related biology technology :

1. Princeton scientists find an equation for materials innovation
2. Princeton scientists find unusual electrons that go with the flow
3. Online Systems Engineering Master's Program Attracts Engineers from Fortune 500 Firms
4. NC State engineers discover nanoparticles can break on through
5. Engineers aim to solve burning computer problem
6. Virginia Tech engineers identify conditions that initiate erosion
7. Techstreet Launches BuildingBlocks Utility for Industry Standards Saving Time and Increasing Productivity for Engineers
8. Virginia Tech engineers investigate energy independent monitoring system for bridges
9. New Educational Website Celebrates the Accomplishments of Engineers
10. Engineers tune a nanoscale grating structure to trap and release a variety of light waves
11. UB engineers prove that carbon nanotubes are superior to metals for electronics
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Princeton engineers make breakthrough in ultra-sensitive sensor technology 
(Date:2/11/2016)... and GERMANTOWN, Maryland , ... Frankfurt Prime Standard: QIA) today announced the introduction of ... gene expression profiling, expanding QIAGEN,s portfolio of Sample to ... researchers to select from over 20,000 human genes and ... between genes, cellular phenotypes and disease processes. --> ...
(Date:2/11/2016)... , Feb. 11, 2016  Spectra BioPharma Selling ... (CSO) that provides biopharma companies the experience, expertise, ... and deploy outsourced sales teams. Created in concert ... addresses both the strategic and tactical needs of ... sales solutions through both personal and non-personal promotion. ...
(Date:2/11/2016)... ... February 11, 2016 , ... ... cutting-edge information focused on the development and manufacture of biopharmaceuticals and therapeutics, ... sponsor of the 2016 BioProcess International Awards – Recognizing Excellence in the ...
(Date:2/11/2016)... , February 11, 2016 ... ("PositiveID" or "Company") (OTCQB: PSID), a life sciences ... that its Thermomedics subsidiary, which markets the Caregiver® ... growth plan in January 2016, including entering into ... sequential monthly sales growth, and establishing several near-term ...
Breaking Biology Technology:
(Date:1/13/2016)... , January 13, 2016 /PRNewswire/ ... announced the addition of the  "India ... Estimation & Forecast (2015-2020)"  report ... http://www.researchandmarkets.com/research/7h6hnn/india_biometrics ) has announced the addition ... Identification Market - Estimation & Forecast ...
(Date:1/11/2016)... , Jan. 11, 2016  higi, the leading ... 10,000 retail locations, web and mobile, today announced ... million from existing investors. --> ... devoted to further innovate higi,s health platform – ... web portal – including expanding services and programs ...
(Date:1/8/2016)... January 8, 2016 NXTD ), ... WorldVentures ® , a privately held leading direct seller ... Inc. 5000 fastest-growing company announced that on December ... $2 million in Nxt-ID to develop a proprietary new ... Wocket ® , a unique smart wallet that serves ...
Breaking Biology News(10 mins):