Navigation Links
Precision motion tracking - Thousands of cells at a time
Date:9/17/2012

Researchers have developed a new way to observe and track large numbers of rapidly moving objects under a microscope, capturing precise motion paths in three dimensions.

Over the course of the study--reported online Sept. 17, 2012, in the Proceedings of the National Academy of Sciences--researchers followed an unprecedented 24,000 rapidly moving cells over wide fields of view and through large sample volumes, recording each cell's path for as long as 20 seconds.

"We can very precisely track the motion of small things, more than a thousand of them at the same time, in parallel," says research lead and National Science Foundation CAREER awardee Aydogan Ozcan, an electrical engineering and bioengineering professor at UCLA. "We were able to achieve sub-micron accuracy over a large volume, allowing us to understand, statistically, how thousands of objects move in different ways."

The latest study is an extension of several years of NSF-supported work by Ozcan and his colleagues to develop lens-free, holographic microscopy techniques with applications for field-based detection of blood-borne diseases and other areas of tele-medicine. Those efforts recently resulted in a Popular Mechanics Breakthrough Award and a National Geographic Emerging Explorer Award, among others. Ozcan's research is also supported through an NIH Director's New Innovator Award, Office of Naval Research Young Investigator Award and an Army Research Office Young Investigator Award from the Department of Defense.

For the recent work, Ozcan and his colleagues--Ting-Wei Su, also of UCLA, and Liang Xue, of both UCLA and Nanjing University of Science and Technology in China--used offset beams of red and blue light to create holographic information that, when processed using sophisticated software, accurately reveal the paths of objects moving under a microscope. The researchers tracked several cohorts of more than 1,500 human male gamete cells over a relatively wide field of view (more than 17 square millimeters) and large sample volume (up to 17 cubic millimeters) over several seconds.

The technique, along with a novel software algorithm that the team developed to process observational data, revealed previously unknown statistical pathways for the cells. The researchers found that human male gamete cells travel in a series of twists and turns along a constantly changing path that occasionally follows a tight helix - a spiral that, 90 percent of the time, is in a clockwise (right-handed) direction.

Because only four to five percent of the cells in a given sample traveled in a helical path at any given time, researchers would not have been able to observe the rare behavior without the new high-throughput microscopy technique.

"This latest study is an extension of truly novel and creative work," says Leon Esterowitz, the NSF biophotonics program officer who has supported Ozcan's efforts. "The holographic technique could accelerate drug discovery and prove valuable for monitoring pharmaceutical treatments of dangerous microbial diseases."

The PNAS paper reports observations of 24,000 cells over the duration of the experiments. Such a large number of observations provide a statistically significant dataset and a useful methodology for potentially studying a range of subjects, from the impact of pharmaceuticals and other substances on large numbers of cells--in real time--to fertility treatments and drug development.

The same approach may also enable scientists to study quick-moving, single-celled microorganisms. Many of the dangerous protozoa found in unsanitary drinking water and rural bodies of water have only been observed in small samples moving through an area that is roughly two dimensional. The new lens-free holographic imaging technique could potentially reveal unknown elements of protozoan behavior and allow real-time testing of novel drug treatments to combat some of the most deadly forms of those microbes.


'/>"/>
Contact: Josh Chamot
jchamot@nsf.gov
703-292-7730
National Science Foundation
Source:Eurekalert  

Related biology technology :

1. Precision motion tracking Thousands of cells at a time
2. bioTheranostics Launches Precision Medicine Biomarkers for Tumor Pathway Interrogation
3. K-V Pharmaceutical "First Day" Motions Approved by U.S. Bankruptcy Court
4. Roche 454 Life Sciences and SoftGenetics Sign Co-Promotion Agreement for Next-Gen Sequencing Software Tools
5. PinneyAssociates Announces Senior Staff Promotions
6. inVentiv Health to Acquire SDI Promotional and Medical Audit Businesses From IMS Health
7. Microfabrication breakthrough could set piezoelectric material applications in motion
8. Neuralstem Cells Induce Significant Functional Improvement In Permanent Rat Spinal Cord Injury, Cell Study Reports
9. AllCells Introduces Autoimmune Diseased Cells and Tissue Products
10. Stem Cells Bring New Hope for Parry-Romberg Syndrome Patients
11. AllCells, LLC Named to Inc. Magazines 500/5000 List of Fastest Growing Companies
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Precision motion tracking - Thousands of cells at a time
(Date:4/26/2017)... ... April 26, 2017 , ... Baltimore bio tech firm, ... security screening solution at the National Postal Forum 2017 in Baltimore, Maryland, May ... highly accurate, easy to use and low cost threat detection solution for government ...
(Date:4/25/2017)... California (PRWEB) , ... April 25, 2017 , ... ... Intelligence (AI), leading supplier of Common Lisp (CL) development tools, and market leader ... , which includes key performance enhancements now available within the most effective system ...
(Date:4/25/2017)... WA (PRWEB) , ... April 25, 2017 , ... Leaders ... division of Quorum, will be featured in multiple sessions at this week’s Association ... from emerging trends to best practices in clinical research. , "We are excited to ...
(Date:4/21/2017)... (PRWEB) , ... April 21, 2017 , ... ... and Webster Bank, today announced first round funding to three startups through the ... early-stage financial support to new business startups affiliated with UConn. , The UConn ...
Breaking Biology Technology:
(Date:3/30/2017)... The research team of The Hong Kong ... identification by adopting ground breaking 3D fingerprint minutiae recovery and matching ... and accuracy for use in identification, crime investigation, immigration control, security ... ... A research team led by ...
(Date:3/27/2017)... N.Y. , March 27, 2017  Catholic ... Information and Management Systems Society (HIMSS) Analytics for ... EMR Adoption Model sm . In addition, CHS ... of U.S. hospitals using an electronic medical record ... for its high level of EMR usage in ...
(Date:3/23/2017)... Research and Markets has announced the addition of the "Global ... 2025" report to their offering. ... The Global Vehicle Anti-Theft System Market is ... next decade to reach approximately $14.21 billion by 2025. ... all the given segments on global as well as regional levels ...
Breaking Biology News(10 mins):