Navigation Links
Platinum-rich shell, platinum-poor core

This release is available in German.

Hydrogen fuel cells will power the automobiles of the future; however, they have so far suffered from being insufficiently competitive. At the University of Houston, Texas, USA, a team led by Peter Strasser has now developed a new class of electrocatalyst that could help to improve the capacity of fuel cells. The active phase of the catalyst consists of nanoparticles with a platinum-rich shell and a core made of an alloy of copper, cobalt, and platinum. This catalyst demonstrates the highest activity yet observed for the reduction of oxygen.

Hydrogen fuel cells are a tamed version of the explosive reaction that occurs between oxygen and hydrogen gases to form water. To allow the reaction to proceed gently and the energy released to be tapped in the form of an electrical current, the reactants are separated within the fuel cell, and each half-reaction occurs in its own chamber. In one half-cell, oxygen takes up electrons from an electrode (reduction); in the other, hydrogen gas gives up electrons (oxidation). The cells are linked by a polymer electrolyte membrane, across which exchange occurs.

To get the reaction to proceed, the electrodes must be catalytic. For decades, the material of choice for the electrode in the oxygen half-reaction has been the precious metal platinum. Now, Strasser and his team have developed a new material, an alloy of platinum, copper, and cobalt that is deposited onto carbon supports in the form of nanoparticles. The active catalytic phase is formed in situ: when a cyclic alternating current is applied to the electrode, the less precious metals, especially the copper, on the surface of the nanoparticles separate from the alloy. This process results in nanoparticles with a core made of the original copper-rich alloy and a shell containing almost exclusively platinum.

The oxygen-reducing activity of our new electrocatalytic material is unsurpassedit is four to five times higher than that of pure platinum. In addition, we have demonstrated how to incorporate and activate this material in situ in a fuel cell, says Strasser. The observed increase in surface area of the nanoparticles is not enough to explain the increased activity. Strasser suspects that special altered structural characteristics of the surface play a role. Although the surface consists mostly of platinum, the distances between the platinum atoms on the particle surface seem to be shorter than those in pure platinum. This compression can be stabilized by the alloy core, which shows even shorter Pt-Pt distances because of the presence of copper and cobalt. In addition, the copper-rich core seems to influence the electronic properties of the platinum shell. Theoretical calculations have suggested that the oxygen can thus bind optimally to the particle surface, allowing it to be more easily reduced.


Contact: Peter Strasser
John Wiley & Sons, Inc.

Post Your Comments:
(Date:11/25/2015)... The Global Genomics Industry ... and in-depth study on the current state of ... ) , The report provides ... classifications, applications and industry chain structure. The Genomics ... including development trends, competitive landscape analysis, and key ...
(Date:11/24/2015)... N.J. (PRWEB) , ... November 24, 2015 , ... The ... the recipient of the 2016 USGA Green Section Award. Presented annually since 1961, the ... through his or her work with turfgrass. , Clarke, of Iselin, N.J., ...
(Date:11/24/2015)... 2015 /CNW/ - iCo Therapeutics ("iCo" or "the Company") ... for the quarter ended September 30, 2015. Amounts, ... and presented under International Financial Reporting Standards ("IFRS"). ... said Andrew Rae , President & CEO ... not only value enriching for this clinical program, ...
(Date:11/24/2015)... 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: AEZ) ... of the Toronto Stock Exchange, confirms that as of ... corporate developments that would cause the recent movements in ... --> About Aeterna Zentaris Inc. ... Aeterna Zentaris is a specialty biopharmaceutical company engaged ...
Breaking Biology Technology:
(Date:11/10/2015)... , Nov. 10, 2015 ... biometrics that helps to identify and verify the ... is considered as the secure and accurate method ... of a particular individual because each individual,s signature ... results especially when dynamic signature of an individual ...
(Date:11/2/2015)... 2015  SRI International has been awarded a contract ... services to the National Cancer Institute (NCI) PREVENT Cancer ... expertise, modern testing and support facilities, and analytical instrumentation ... toxicology studies to evaluate potential cancer prevention drugs. ... Cancer Drug Development Program is an NCI-supported pipeline to ...
(Date:10/29/2015)... Oct. 29, 2015  Rubicon Genomics, Inc., today ... distribution of its DNA library preparation products, including ... new ThruPLEX Plasma-seq kit. ThruPLEX Plasma-seq has been ... of NGS libraries for liquid biopsies--the analysis of ... prognostic applications in cancer and other conditions. Eurofins ...
Breaking Biology News(10 mins):