Navigation Links
Plasma etching pushes the limits of a shrinking world
Date:11/10/2011

Plasma etching (using an ionized gas to carve tiny components on silicon wafers) has long enabled the perpetuation of Moore's Law -- the observation that the number of transistors that can be squeezed into an integrated circuit doubles about every two years. Without the compensating capabilities of plasma etching, Moore's Law would have faltered around 1980 with transistor sizes at about 1 micron (the diameter of a human hair is approximately 40-50 microns wide). Today, etch compensation helps create devices that are smaller than 20 nanometers (1,000 times smaller than a micron).

Now more than ever, plasma etch technology is used to extend semiconductor device fabrication into the nanoelectronics age -- and technologists at Lam Research are developing techniques for the manufacture of even smaller, faster, and more densely packed multi-functionality chips. The question now is how much smaller and faster can the semiconductor industry go? The answer has much to do with plasma etch technology.

One of the most critical steps of semiconductor manufacturing, plasma etching creates finely delineated features in the conductive and dielectric (insulating) layers on integrated circuits. Plasma etch techniques can also compensate for limitations in lithography, the optical process that develops the "template" for creating nanoelectronic structures on silicon wafers. Transistors and other components are now so small that lithography can no longer produce templates with the necessary precision to pack millions of transistors onto small integrated circuits. While researchers are working on new lithography technology (extreme ultraviolet or EUV) to overcome this limitation, plasma etching is used to compensate for lithography's imperfections by filling in gaps and smoothing out edges of the tiny components on the chip (Figure 1). Plasma etching also enables other techniques that extend current lithography capabilities, including double patterning (a method of overlaying two patterns to achieve the original design) and directly shrinking structures smaller than the template dimensions.

Yet, plasma etching itself is now facing the fundamental limits imposed by the basic laws of physics and chemistry. Because etching is involved in forming the critical structures of every semiconductor device, Lam Research technologists are learning to better control the behavior of the various components of the plasma (a gaseous mixture of charged and neutral particles) during the etching process. The ultimate goal would be to selectively etch one layer of atoms at a time (atomic-layer etching or ALE), without disturbing the bulk of the material underneath.

Over the next 5 years, improving plasma etch technology will be key to extending Moore's Law further and manufacturing the next-generation of consumer electronics devices.


'/>"/>
Contact: Saralyn Stewart
stewart@physics.utexas.edu
512-694-2320
American Physical Society
Source:Eurekalert

Related biology technology :

1. Electrochemistry controlled with a plasma electrode
2. PPTA Urges CMS for Appropriate Hospital Outpatient Reimbursement for Plasma Protein Therapies
3. Plasma nanoscience needed for green energy revolution
4. New Video on Plasma Donation Available
5. Plasma Protein Therapies Not Suitable for Biosimilars
6. First Duplex Test for Parvovirus B19 and Hepatitis A Virus Increases Safety of Human Plasma and Plasma Products
7. PPTA Urges CMS for Appropriate Hospital Outpatient Reimbursement for Plasma Protein Therapies
8. Ruedi Waeger Receives the 2010 Robert W. Reilly Leadership Award from Plasma Protein Therapeutics Association
9. Norgen Biotek Launches 10 New Kits for the Isolation of High-Quality Circulating Nucleic Acids from Blood, Plasma and Serum
10. Painless plasma jets could replace dentists drill
11. Researchers prolong the plasma half-life of biopharmaceutical proteins
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/10/2017)... PA (PRWEB) , ... October 10, 2017 , ... ... City Science Center’s FirstHand program has won a US2020 STEM Mentoring Award. Representatives ... the award for Excellence in Volunteer Experience from US2020. , US2020’s mission is ...
(Date:10/10/2017)... SANTA BARBARA, CALIFORNIA (PRWEB) , ... October 10, ... ... risk management, technological innovation and business process optimization firm for the life sciences ... the BoxWorks conference in San Francisco. , The presentation, “Automating GxP ...
(Date:10/9/2017)... (PRWEB) , ... October 09, 2017 , ... At its ... Dr. Christopher Stubbs, a professor in Harvard University’s Departments of Physics and Astronomy, has ... was a member of the winning team for the 2015 Breakthrough Prize in Fundamental ...
(Date:10/7/2017)... WA (PRWEB) , ... October ... ... industry leader in Hi-C-based genomic technologies, launched its ProxiMeta™ Hi-C metagenome deconvolution ... ProxiMeta Hi-C kit and accompanying cloud-based bioinformatics software to perform Hi-C metagenome ...
Breaking Biology Technology:
(Date:4/11/2017)... 11, 2017 Crossmatch®, a globally-recognized leader ... today announced that it has been awarded a ... Activity (IARPA) to develop next-generation Presentation Attack Detection ... "Innovation has been a driving force within Crossmatch ... allow us to innovate and develop new technologies ...
(Date:4/5/2017)... SEATTLE , April 5, 2017  The Allen ... the Allen Cell Explorer: a one-of-a-kind portal and dynamic ... large-scale 3D imaging data, the first application of deep ... edited human stem cell lines and a growing suite ... the platform for these and future publicly available resources ...
(Date:3/30/2017)... LOS ANGELES , March 30, 2017  On ... Hack the Genome hackathon at ... This exciting two-day competition will focus on developing health ... experience. Hack the Genome is ... has been tremendous. The world,s largest companies in the ...
Breaking Biology News(10 mins):