Navigation Links
Plasma etching pushes the limits of a shrinking world
Date:11/10/2011

Plasma etching (using an ionized gas to carve tiny components on silicon wafers) has long enabled the perpetuation of Moore's Law -- the observation that the number of transistors that can be squeezed into an integrated circuit doubles about every two years. Without the compensating capabilities of plasma etching, Moore's Law would have faltered around 1980 with transistor sizes at about 1 micron (the diameter of a human hair is approximately 40-50 microns wide). Today, etch compensation helps create devices that are smaller than 20 nanometers (1,000 times smaller than a micron).

Now more than ever, plasma etch technology is used to extend semiconductor device fabrication into the nanoelectronics age -- and technologists at Lam Research are developing techniques for the manufacture of even smaller, faster, and more densely packed multi-functionality chips. The question now is how much smaller and faster can the semiconductor industry go? The answer has much to do with plasma etch technology.

One of the most critical steps of semiconductor manufacturing, plasma etching creates finely delineated features in the conductive and dielectric (insulating) layers on integrated circuits. Plasma etch techniques can also compensate for limitations in lithography, the optical process that develops the "template" for creating nanoelectronic structures on silicon wafers. Transistors and other components are now so small that lithography can no longer produce templates with the necessary precision to pack millions of transistors onto small integrated circuits. While researchers are working on new lithography technology (extreme ultraviolet or EUV) to overcome this limitation, plasma etching is used to compensate for lithography's imperfections by filling in gaps and smoothing out edges of the tiny components on the chip (Figure 1). Plasma etching also enables other techniques that extend current lithography capabilities, including double patterning (a method of overlaying two patterns to achieve the original design) and directly shrinking structures smaller than the template dimensions.

Yet, plasma etching itself is now facing the fundamental limits imposed by the basic laws of physics and chemistry. Because etching is involved in forming the critical structures of every semiconductor device, Lam Research technologists are learning to better control the behavior of the various components of the plasma (a gaseous mixture of charged and neutral particles) during the etching process. The ultimate goal would be to selectively etch one layer of atoms at a time (atomic-layer etching or ALE), without disturbing the bulk of the material underneath.

Over the next 5 years, improving plasma etch technology will be key to extending Moore's Law further and manufacturing the next-generation of consumer electronics devices.


'/>"/>
Contact: Saralyn Stewart
stewart@physics.utexas.edu
512-694-2320
American Physical Society
Source:Eurekalert

Related biology technology :

1. Electrochemistry controlled with a plasma electrode
2. PPTA Urges CMS for Appropriate Hospital Outpatient Reimbursement for Plasma Protein Therapies
3. Plasma nanoscience needed for green energy revolution
4. New Video on Plasma Donation Available
5. Plasma Protein Therapies Not Suitable for Biosimilars
6. First Duplex Test for Parvovirus B19 and Hepatitis A Virus Increases Safety of Human Plasma and Plasma Products
7. PPTA Urges CMS for Appropriate Hospital Outpatient Reimbursement for Plasma Protein Therapies
8. Ruedi Waeger Receives the 2010 Robert W. Reilly Leadership Award from Plasma Protein Therapeutics Association
9. Norgen Biotek Launches 10 New Kits for the Isolation of High-Quality Circulating Nucleic Acids from Blood, Plasma and Serum
10. Painless plasma jets could replace dentists drill
11. Researchers prolong the plasma half-life of biopharmaceutical proteins
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/26/2016)... ... May 26, 2016 , ... ... Medistem Panama Inc. at the City of Knowledge in Panama, a 6 ... cells in the US earlier this year following FDA approval of a second ...
(Date:5/26/2016)... NY (PRWEB) , ... May 26, 2016 , ... ... decades. FireflySci cuvettes are used in leading laboratories all over the globe. ... day. , In addition to manufacturing awesome cuvettes, FireflySci makes spectrophotometer calibration standards ...
(Date:5/25/2016)... ... May 25, 2016 , ... Thailand’s Board ... BIO 2016 in San Francisco. Located at booth number 7301, representatives from the ... questions and discuss the Thai biotechnology and life sciences sector. , Deputy ...
(Date:5/25/2016)... ... May 25, 2016 , ... Founder ... double board-certified in surgery and surgery of the hand by the National Board ... stranger to going above and beyond in his pursuit of providing the most ...
Breaking Biology Technology:
(Date:4/28/2016)... SAN FRANCISCO and BANGALORE, India ... part of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... service provider, today announced a global partnership that ... convenient way to use mobile banking and payment services. ... Mobility is a key innovation area for financial services, but ...
(Date:4/26/2016)... -- Research and Markets has announced the ...  report to their offering.  , ,     (Logo: ... forecast the global multimodal biometrics market to grow ... 2016-2020.  Multimodal biometrics is being implemented ... healthcare, BFSI, transportation, automotive, and government for controlling ...
(Date:4/15/2016)... DUBLIN , April 15, 2016 ... of the,  "Global Gait Biometrics Market 2016-2020,"  report ... http://photos.prnewswire.com/prnh/20160330/349511LOGO ) , ,The global gait ... CAGR of 13.98% during the period 2016-2020. ... movement angles, which can be used to compute ...
Breaking Biology News(10 mins):