Navigation Links
Plasma etching pushes the limits of a shrinking world
Date:11/10/2011

Plasma etching (using an ionized gas to carve tiny components on silicon wafers) has long enabled the perpetuation of Moore's Law -- the observation that the number of transistors that can be squeezed into an integrated circuit doubles about every two years. Without the compensating capabilities of plasma etching, Moore's Law would have faltered around 1980 with transistor sizes at about 1 micron (the diameter of a human hair is approximately 40-50 microns wide). Today, etch compensation helps create devices that are smaller than 20 nanometers (1,000 times smaller than a micron).

Now more than ever, plasma etch technology is used to extend semiconductor device fabrication into the nanoelectronics age -- and technologists at Lam Research are developing techniques for the manufacture of even smaller, faster, and more densely packed multi-functionality chips. The question now is how much smaller and faster can the semiconductor industry go? The answer has much to do with plasma etch technology.

One of the most critical steps of semiconductor manufacturing, plasma etching creates finely delineated features in the conductive and dielectric (insulating) layers on integrated circuits. Plasma etch techniques can also compensate for limitations in lithography, the optical process that develops the "template" for creating nanoelectronic structures on silicon wafers. Transistors and other components are now so small that lithography can no longer produce templates with the necessary precision to pack millions of transistors onto small integrated circuits. While researchers are working on new lithography technology (extreme ultraviolet or EUV) to overcome this limitation, plasma etching is used to compensate for lithography's imperfections by filling in gaps and smoothing out edges of the tiny components on the chip (Figure 1). Plasma etching also enables other techniques that extend current lithography capabilities, including double patterning (a method of overlaying two patterns to achieve the original design) and directly shrinking structures smaller than the template dimensions.

Yet, plasma etching itself is now facing the fundamental limits imposed by the basic laws of physics and chemistry. Because etching is involved in forming the critical structures of every semiconductor device, Lam Research technologists are learning to better control the behavior of the various components of the plasma (a gaseous mixture of charged and neutral particles) during the etching process. The ultimate goal would be to selectively etch one layer of atoms at a time (atomic-layer etching or ALE), without disturbing the bulk of the material underneath.

Over the next 5 years, improving plasma etch technology will be key to extending Moore's Law further and manufacturing the next-generation of consumer electronics devices.


'/>"/>
Contact: Saralyn Stewart
stewart@physics.utexas.edu
512-694-2320
American Physical Society
Source:Eurekalert

Related biology technology :

1. Electrochemistry controlled with a plasma electrode
2. PPTA Urges CMS for Appropriate Hospital Outpatient Reimbursement for Plasma Protein Therapies
3. Plasma nanoscience needed for green energy revolution
4. New Video on Plasma Donation Available
5. Plasma Protein Therapies Not Suitable for Biosimilars
6. First Duplex Test for Parvovirus B19 and Hepatitis A Virus Increases Safety of Human Plasma and Plasma Products
7. PPTA Urges CMS for Appropriate Hospital Outpatient Reimbursement for Plasma Protein Therapies
8. Ruedi Waeger Receives the 2010 Robert W. Reilly Leadership Award from Plasma Protein Therapeutics Association
9. Norgen Biotek Launches 10 New Kits for the Isolation of High-Quality Circulating Nucleic Acids from Blood, Plasma and Serum
10. Painless plasma jets could replace dentists drill
11. Researchers prolong the plasma half-life of biopharmaceutical proteins
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... ... 27, 2016 , ... Cancer experts from Austria, Hungary, Switzerland, ... a new and helpful biomarker for malignant pleural mesothelioma. Surviving Mesothelioma has just ... now. , Biomarkers are components in the blood, tissue or body fluids ...
(Date:6/27/2016)... June 27, 2016  Liquid Biotech ... funding of a Sponsored Research Agreement with The ... cells (CTCs) from cancer patients.  The funding will ... levels correlate with clinical outcomes in cancer patients ... will then be employed to support the design ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers and fluorometers ... the 6000i models are higher end machines that use the more unconventional z-dimension of ... beam from the bottom of the cuvette holder. , FireflySci has developed several ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
Breaking Biology Technology:
(Date:5/24/2016)... , May 24, 2016 Ampronix facilitates superior patient care by providing unparalleled ... medical LCD display is the latest premium product recently added to the range of ... ... ... Sony 3d Imaging- LCD Medical Display- Ampronix News ...
(Date:5/3/2016)... 2016  Neurotechnology, a provider of high-precision biometric ... Biometric Identification System (ABIS) , a complete system ... ABIS can process multiple complex biometric transactions with ... fingerprint, face or iris biometrics. It leverages the ... MegaMatcher Accelerator , which have been used ...
(Date:4/19/2016)... The new GEZE SecuLogic access ... "all-in-one" system solution for all door components. It can ... door interface with integration authorization management system, and thus ... minimal dimensions of the access control and the optimum ... offer considerable freedom of design with regard to the ...
Breaking Biology News(10 mins):