Navigation Links
Pixel perfect: Cornell develops a lens-free, pinhead-size camera
Date:7/6/2011

ITHACA, N.Y. It's like a Brownie camera for the digital age: The microscopic device fits on the head of a pin, contains no lenses or moving parts, costs pennies to make and this Cornell-developed camera could revolutionize an array of science from surgery to robotics.

The camera was invented in the lab of Alyosha Molnar, Cornell assistant professor of electrical and computer engineering, and developed by a group led by Patrick Gill, a postdoctoral associate. Their working prototype, detailed online in the journal Optics Letters (July 6, 2011), is 100th of a millimeter thick, and one-half millimeter on each side. The camera resolves images about 20 pixels across not portrait studio quality, but enough to shed light on previously hard-to-see things.

"It's not going to be a camera with which people take family portraits, but there are a lot of applications out there that require just a little bit of dim vision," Gill said.

In fact, Gill, whose other research interests involve making sense of how the brain's neurons fire under certain stimuli, began this invention as a side project related to work on developing lens-less implantable systems for imaging brain activity. This type of imaging system could be useful as part of an implantable probe for imaging neurons that have been modified to glow when they are active.

Gill's camera is just a flat piece of doped silicon, which looks something like a tiny CD, with no parts that require off-chip manufacturing. As a result, it costs just a few cents to make and is incredibly small and light, as opposed to conventional small cameras on chips that cost a dollar or more and require bulky focusing optics.

The scientists call their camera a Planar Fourier Capture Array (PFCA) because it uses the principles of the Fourier transform, which is a mathematical tool that allows multiple ways of capturing the same information. Each pixel in the PFCA reports one component of the Fourier transform of the image being detected by being sensitive to a unique blend of incident angles.

While Fourier components themselves are sometimes directly useful, a bit of computation can also transform Fourier components into an image.

The scientists will continue working to improve the camera's resolution and efficiency, but they think their concept can lead to a myriad of applications. It could be a component in any cheap electronic system in devices that, for example, detect the angle of the sun or a micro-robot that requires a simple visual system to navigate.


'/>"/>

Contact: Blaine Friedlander
blaine@cornell.edu
607-254-8093
Cornell University
Source:Eurekalert

Related biology technology :

1. Pixel Bridge Works With Anika Therapeutics to Launch New Website
2. Glowing Cornell dots -- a potential cancer diagnostic tool set for human trials
3. Under new leadership, Kavli Institute at Cornell evolves from a think tank to a proving ground
4. Gamida Cell Announces Feasibility Study With Weill Cornell Medical College
5. Polycystic Kidney Disease Assay at Cornell University Uses Transgenomics Surveyor Nuclease & WAVE Technology
6. Veredus Laboratories Develops Lab-on-Chip Solution to Detect and Differentiate Several Food-Borne Pathogens, Including Escherichia coli (E. coli)
7. University of Houston develops method for creating single-crystal arrays of graphene
8. NJIT professor develops a biologically inspired catalyst, an active yet inert material
9. New England Biolabs Develops Novel Small RNA NGS Protocol: Reagents Improve Yield and Decrease Adaptor-Dimer Formation
10. Pitt-led team develops nanoscale light sensor compatible with Etch-a-Sketch nanoelectronic platform
11. Transgenomic Develops New Assays to Detect EGFR Mutations Using COLD-PCR
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/12/2016)... ... February 12, 2016 , ... ... World Congress Center in Atlanta, Georgia, will include 848 exhibitors (count as of ... will be displaying products and services used by the scientific community in industrial, ...
(Date:2/11/2016)... Non-profit Consortium Aims to Generate Genomic Information for ... Discovery --> --> The ... sequence 100,000 individuals. It is intended to initially include populations ... North and East Asian countries. --> ... focus on creating phased reference genomes for all major Asian ...
(Date:2/11/2016)... Feb. 11, 2016  Bioethics International, a not-for-profit organization focused ... developed, marketed and made accessible to patients around the world, ... had named the publication of the Good Pharma Scorecard ... is also featured as one of BMJ Open ,s ... year that are most frequently read. Ed Sucksmith ...
(Date:2/11/2016)...  Dovetail Genomics™ LLC today announced that it has ... planned metagenomic genome assembly service. Richard Green , ... method in a talk on Friday, February 12 at ... in Orlando, Fla. ... difficult. Using its proprietary Chicago ™ ...
Breaking Biology Technology:
(Date:2/3/2016)... , Feb. 3, 2016 Vigilant Solutions ... Police Department in Missouri solved ... plate reader (LPR) data from Vigilant Solutions. ... case in which the victim was walking out of a convenience store and ... space next to his vehicle, striking his vehicle and ...
(Date:2/2/2016)... 2016 Checkpoint Inhibitors for Cancer – ... Are you interested in the future of cancer ... inhibitors. Visiongain,s report gives those predictions to 2026 ... level. Avoid falling behind in data or ... revenues those emerging cancer therapies can achieve. There ...
(Date:2/1/2016)... 1, 2016 Rising sales of ... global touchfree intuitive gesture control market size ... sales of consumer electronics coupled with new technological advancements ... size through 2020   --> ... new technological advancements to drive global touchfree intuitive gesture ...
Breaking Biology News(10 mins):