Navigation Links
Pivoting hooks of graphene's chemical cousin could revolutionize work of electron microscopes
Date:11/1/2010

The single layer material Graphene was the subject of a Nobel prize this year but research led by a team of researchers at the University of Warwick has found molecular hooks on the surface of its close chemical cousin, Graphene Oxide, that will potentially provide massive benefits to researchers using transmission electron microscopes. They could even be used in building molecular scale mechanisms.

The research team, which includes Drs. Jeremy Sloan, Neil Wilson and PhD student Priyanka Pandey from the Department of Physics and Dr. Jon Rourke from the Department of Chemistry together with the groups of Drs. Kazu Suenaga and Zheng Liu from AIST in Japan and Drs. Ian Shannon and Laura Perkins in Birmingham were looking at the possibility of using Graphene as a base to mount single molecules for imaging by transmission electron microscopy. As Graphene forms an electron transparent sheet just one atom thick it would enable high precision, high contrast imaging of the molecules being studied as well as the study of any interactions they have with the supporting graphene.

While this idea is great in theory, Graphene is actually very difficult to create and manipulate in practice. The researchers therefore turned to Graphene's easier to handle cousin, Graphene Oxide. This choice turned out to be a spectacularly better material as they found extremely useful properties, in the form of ready-made molecular hooks that could make Graphene Oxide the support material of choice for future transmission electron microscopy of any molecule with oxygen on its surface.

Graphene Oxide's name obscures the fact that it is actually a combination of carbon, oxygen and hydrogen. For the most part it still resembles the one atom thin sheet of pure Graphene, but it also has "functional groups" consisting of hydrogen paired with oxygen. These functional groups can bind strongly to molecules with external oxygens making them ideal tethers for researchers wishing to study them by transmission electron microscoscopy.

This feature alone will probably be enough to persuade many researchers to turn to Graphene Oxide as a support for the analysis of a range of molecules by transmission electron microscopy, but the researchers found yet another intriguing property of these handy hooks the molecules attached to them move and pivot around them.

Dr Jeremy Sloan said: "Under the right conditions the functional groups not only provide molecular tethers that hold molecules in an exact spot they also allow the molecule to be spun in that position. This opens up a range of new opportunities for the analysis of such molecules but could also be a useful mechanism for anyone seeking to create molecular sized "machinery"."


'/>"/>

Contact: Dr. Jeremy Sloan
j.sloan@warwick.ac.uk
44-024-765-23392
University of Warwick
Source:Eurekalert  

Related biology technology :

1. Inaugural Pharma Exchange Conference Produced by Informex to Draw Together Milwaukee, Wisconsin Chemical Industry
2. Sheffield Bio-Science Adds Chemically Defined Media Supplements to Product Portfolio
3. Texas A&M chemical engineers work could lead to improved DNA analysis
4. AloeSafe™ Hand Sanitizer is Free From Toxic Chemicals
5. Glenmark Announces the Discovery of a Novel Chemical Entity GRC 17536, a TRPA1 Receptor Antagonist, a Potential First-in-Class Molecule Globally
6. 21st Century Biochemicals Marks Its Third Consecutive Year on the Inc. 5000
7. Access Pharmaceuticals Presents at American Chemical Society Annual Fall Meeting in Boston, MA
8. ChemAxon Extends chemicalize.org Free Service With Predicted Data and User Customization
9. Broad Institute Acquires License to all ChemAxon products and Deploys Across Chemical Biology Platform
10. TASC, Inc. Appoints Rashid Chotani to Lead Chemical-Biological Defense Programs
11. CRAiLAR® Organic Fibers is Approved for Global Organic Textile Standard Chemical Input Certification
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Pivoting hooks of graphene's chemical cousin could revolutionize work of electron microscopes
(Date:8/15/2017)... , ... August 15, 2017 , ... Kapstone Medical ... 10 years of successes helping medical technology companies and inventors develop and safeguard their ... renowned full-service national engineering firm with a portfolio of clients in the United States ...
(Date:8/15/2017)... ... August 15, 2017 , ... ... of 6” modular downlights designed to stay tightly sealed and perform efficiently for ... damp and wet location listings just aren't enough, such as: hospitals; behavioral health ...
(Date:8/14/2017)... ... August 14, 2017 , ... ... antibodies. Key researchers in the antibody community have recently come together to address ... antibodies in the laboratory. , The team at Thermo Fisher ...
(Date:8/11/2017)... ... August 11, 2017 , ... A staple in the community for more ... incorporate important key elements including a new digital marketing strategy and updated logo. , ... Bill Miller has partnered with the South Texas Blood & Tissue Center for the ...
Breaking Biology Technology:
(Date:4/24/2017)... 2017 Janice Kephart , former ... Strategy Partners, LLP (IdSP) , today issues the ... Trump,s March 6, 2017 Executive Order: Protecting ... can be instilled with greater confidence, enabling the ... refugee applications are suspended by until at least ...
(Date:4/18/2017)...  Socionext Inc., a global expert in SoC-based imaging and computing ... M820, which features the company,s hybrid codec technology. A demonstration utilizing ... Inc., will be showcased during the upcoming Medtec Japan at Tokyo ... Las Vegas Convention Center April 24-27. ... Click here for an image ...
(Date:4/13/2017)... UBM,s Advanced Design and Manufacturing event in ... and evolving technology through its 3D Printing and Smart ... the expo portion of the event and feature a ... on trending topics within 3D printing and smart manufacturing. ... will take place June 13-15, 2017 at the Jacob K. ...
Breaking Biology News(10 mins):