Navigation Links
Pivoting hooks of graphene's chemical cousin could revolutionize work of electron microscopes
Date:11/1/2010

The single layer material Graphene was the subject of a Nobel prize this year but research led by a team of researchers at the University of Warwick has found molecular hooks on the surface of its close chemical cousin, Graphene Oxide, that will potentially provide massive benefits to researchers using transmission electron microscopes. They could even be used in building molecular scale mechanisms.

The research team, which includes Drs. Jeremy Sloan, Neil Wilson and PhD student Priyanka Pandey from the Department of Physics and Dr. Jon Rourke from the Department of Chemistry together with the groups of Drs. Kazu Suenaga and Zheng Liu from AIST in Japan and Drs. Ian Shannon and Laura Perkins in Birmingham were looking at the possibility of using Graphene as a base to mount single molecules for imaging by transmission electron microscopy. As Graphene forms an electron transparent sheet just one atom thick it would enable high precision, high contrast imaging of the molecules being studied as well as the study of any interactions they have with the supporting graphene.

While this idea is great in theory, Graphene is actually very difficult to create and manipulate in practice. The researchers therefore turned to Graphene's easier to handle cousin, Graphene Oxide. This choice turned out to be a spectacularly better material as they found extremely useful properties, in the form of ready-made molecular hooks that could make Graphene Oxide the support material of choice for future transmission electron microscopy of any molecule with oxygen on its surface.

Graphene Oxide's name obscures the fact that it is actually a combination of carbon, oxygen and hydrogen. For the most part it still resembles the one atom thin sheet of pure Graphene, but it also has "functional groups" consisting of hydrogen paired with oxygen. These functional groups can bind strongly to molecules with external oxygens making them ideal tethers for researchers wishing to study them by transmission electron microscoscopy.

This feature alone will probably be enough to persuade many researchers to turn to Graphene Oxide as a support for the analysis of a range of molecules by transmission electron microscopy, but the researchers found yet another intriguing property of these handy hooks the molecules attached to them move and pivot around them.

Dr Jeremy Sloan said: "Under the right conditions the functional groups not only provide molecular tethers that hold molecules in an exact spot they also allow the molecule to be spun in that position. This opens up a range of new opportunities for the analysis of such molecules but could also be a useful mechanism for anyone seeking to create molecular sized "machinery"."


'/>"/>

Contact: Dr. Jeremy Sloan
j.sloan@warwick.ac.uk
44-024-765-23392
University of Warwick
Source:Eurekalert  

Related biology technology :

1. Inaugural Pharma Exchange Conference Produced by Informex to Draw Together Milwaukee, Wisconsin Chemical Industry
2. Sheffield Bio-Science Adds Chemically Defined Media Supplements to Product Portfolio
3. Texas A&M chemical engineers work could lead to improved DNA analysis
4. AloeSafe™ Hand Sanitizer is Free From Toxic Chemicals
5. Glenmark Announces the Discovery of a Novel Chemical Entity GRC 17536, a TRPA1 Receptor Antagonist, a Potential First-in-Class Molecule Globally
6. 21st Century Biochemicals Marks Its Third Consecutive Year on the Inc. 5000
7. Access Pharmaceuticals Presents at American Chemical Society Annual Fall Meeting in Boston, MA
8. ChemAxon Extends chemicalize.org Free Service With Predicted Data and User Customization
9. Broad Institute Acquires License to all ChemAxon products and Deploys Across Chemical Biology Platform
10. TASC, Inc. Appoints Rashid Chotani to Lead Chemical-Biological Defense Programs
11. CRAiLAR® Organic Fibers is Approved for Global Organic Textile Standard Chemical Input Certification
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Pivoting hooks of graphene's chemical cousin could revolutionize work of electron microscopes
(Date:10/12/2017)... , ... October 12, 2017 , ... ... Vilnius, Lithuania, announced today that they have entered into a multiyear collaboration to ... provide CRISPR researchers with additional tools for gene editing across all applications. , ...
(Date:10/12/2017)... ... October 12, 2017 , ... BioMedGPS ... the addition of its newest module, US Hemostats & Sealants. , SmartTRAK’s US ... absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used in surgical applications. ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... platform specifically designed for life science researchers to analyze and interpret datasets, ... Franklin, who made a major contribution to the discovery of the double-helix ...
(Date:10/11/2017)... YORBA LINDA, CA (PRWEB) , ... October 11, ... ... adapted to upregulate any gene in its endogenous context, enabling overexpression experiments and ... activation (CRISPRa) system with small RNA guides is transformative for performing systematic gain-of-function ...
Breaking Biology Technology:
(Date:4/11/2017)... , Apr. 11, 2017 Research and ... Market 2017-2021" report to their offering. ... The global eye tracking market to grow at a ... report, Global Eye Tracking Market 2017-2021, has been prepared based on ... covers the market landscape and its growth prospects over the coming ...
(Date:4/6/2017)... 6, 2017 Forecasts by Product ... Readers, by End-Use (Transportation & Logistics, Government & Public ... & Fossil Generation Facility, Nuclear Power), Industrial, Retail, Business ... Are you looking for a definitive report on ... ...
(Date:4/5/2017)... 4, 2017 KEY FINDINGS The ... at a CAGR of 25.76% during the forecast period ... primary factor for the growth of the stem cell ... MARKET INSIGHTS The global stem cell market ... and geography. The stem cell market of the product ...
Breaking Biology News(10 mins):