Navigation Links
Pitt-led team develops nanoscale light sensor compatible with 'Etch-a-Sketch' nanoelectronic platform
Date:11/14/2010

PITTSBURGHUniversity of Pittsburgh researchers have created a nanoscale light sensor that can be combined with near-atomic-size electronic circuitry to produce hybrid optic and electronic devices with new functionality. The team, which also involved researchers from the University of Wisconsin at Madison, reports in Nature Photonics that the development overcomes one of nanotechnology's most daunting challenges.

The group, led by Jeremy Levy, a professor of physics and astronomy in Pitt's School of Arts and Sciences, fashioned a photonic device less than 4 nanometers wide, enabling on-demand photonic interaction with objects as small as single molecules or quantum dots. In another first, the tiny device can be electrically tuned to change its sensitivity to different colors in the visible spectrum, which may forgo the need for the separate light filters other sensors typically require. Levy worked with Pitt postdoctoral researcher and lead author Patrick Irvin, postdoctoral researchers Daniela Bogorin and Cheng Cen, and Pitt graduate student Yanjun Ma. Also part of the team were University of Wisconsin-Madison researchers Chang-Beom Eom, a professor of materials science and engineering, and research associates Chung Wung Bark and Chad Folkman.

The researchers produced the photonic devices via a rewritable nanoelectronics platform developed in Levy's lab that works like a microscopic Etch A SketchTM, the drawing toy that initially inspired him. His technique, first reported in Nature Materials in March 2008, is a method to switch an oxide crystal between insulating and conducting states. Applying a positive voltage to the sharp conducting probe of an atomic force microscope creates conducting wires only a few nanometers wide at the interface of two insulatorsa 1.2 nanometer-thick layer of lanthanum aluminate grown on a strontium titanate substrate. The conducting nanowires can then be erased with reverse voltage, rendering the interface an insulator once more.

In February 2009, Levy reported in Science that his platform could be used to sculpt a high-density memory device and a transistor called a "SketchFET" with features a mere two nanometers in size.

In this recent work, Levy and his colleagues demonstrated a robust method for incorporating light sensitivity into these electronic circuits, using the same techniques and materials. Photonic devices generate, guide, or detect light waves for a variety of applications, Levy said. Light is remarkably sensitive to the properties of such nanoscale objects as single molecules or quantum dots, but the integration of semiconductor nanowire and nanotube photonic devices with other electronic circuit elements has always been a challenge.

"These results may enable new possibilities for devices that can sense optical properties at the nanoscale and deliver this information in electronic form," Levy said.


'/>"/>

Contact: Morgan Kelly
mekelly@pitt.edu
412-624-4356
University of Pittsburgh
Source:Eurekalert

Related biology technology :

1. Pitt-led researchers to build foundation for quantum supercomputers with $7.5 million federal grant
2. Pitt-led researchers create nanoparticle coating to prevent freezing rain buildup
3. Transgenomic Develops New Assays to Detect EGFR Mutations Using COLD-PCR
4. iDiverse Develops Stress Resistant Yeast for Producing Fuel Ethanol
5. Canadian Company Develops Subconscious Screening Technology
6. Forensic Laboratories Develops First Oral Fluid Test for Ethyl Sulfate Detection
7. Nucleix Researchers Discover DNA Evidence May Easily be Falsified: Company Develops New Detection Technology for Preventing Biological Identity Theft
8. Neogen Develops Quickest Single Test for Beta-Lactams and Tetracyclines in Milk
9. Team develops new metamaterial device
10. UCF professor develops vaccine to protect against black plague bioterror attack
11. UCF professor develops vaccine to protect against black plague bioterror attack
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/7/2017)... (PRWEB) , ... October 06, ... ... years’ experience providing advanced instruments and applications consulting for microscopy and surface ... expertise in application consulting, Nanoscience Analytical offers a broad range of contract ...
(Date:10/7/2017)...  The 2017 Nobel Prize in Chemistry recognizes ... Joachim Frank and Richard Henderson ... (cryo-EM) have helped to broaden the use ... The winners worked with systems manufactured by Thermo ... resolved, three-dimensional images of protein structures that lead ...
(Date:10/6/2017)... ... 2017 , ... On Tuesday, October 24th, ABC² (Accelerate Brain ... adaptive clinical trial for glioblastoma (GBM). The featured speaker will be Dr. Brian ... to the public, but registration is required. , WHAT: ABC² Brain Cancer ...
(Date:10/5/2017)... ... , ... Understanding the microbiome, the millions of bacteria that live in our ... My Future, the newest exhibit on display at the University City Science Center’s Esther ... the lens of the gut microbiome. , Gut Love opens October 12, 2017, ...
Breaking Biology Technology:
(Date:3/30/2017)... The research team of The Hong Kong Polytechnic University ... adopting ground breaking 3D fingerprint minutiae recovery and matching technology, pushing ... for use in identification, crime investigation, immigration control, security of access ... ... A research team led by Dr Ajay ...
(Date:3/28/2017)... , March 28, 2017 ... Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video ... and Region - Global Forecast to 2022", published by ... in 2016 and is projected to reach USD 75.64 ... 2017 and 2022. The base year considered for the ...
(Date:3/24/2017)... 2017 Research and Markets has announced the ... & Trends - Industry Forecast to 2025" report to their ... The Global ... CAGR of around 15.1% over the next decade to reach approximately ... the market estimates and forecasts for all the given segments on ...
Breaking Biology News(10 mins):