Navigation Links
Physicists skirt thermal vibration, transfer optical signal via mechanical oscillator

EUGENE, Ore. -- (Nov. 15, 2012) -- Using tiny radiation pressure forces -- generated each time light is reflected off a surface -- University of Oregon physicists converted an optical field, or signal, from one color to another. Aided by a "dark mode," the conversion occurs through the coupling between light and a mechanical oscillator, without interruption by thermal mechanical vibrations.

In the quest for networking quantum systems and eventually building a quantum Internet -- where photons carry information -- color conversion will be crucial, said co-author Hailin Wang, a member of the Oregon Center for Optics and a professor in the UO physics department. Getting different quantum systems, or nodes, to talk to each other is a major challenge since these systems communicate with photons of distinct wavelength or color. "This is not unlike getting a PC to talk to a Mac, but it involves a quite different process," he said.

"Optomechanical systems can be used to store light and change its color -- operations that are important for a quantum network," said co-author Chunhua Dong, a postdoctoral research associate in Wang's lab.

In a paper appearing Nov. 16 online via Science Express in advance of publication in the journal Science, the Oregon group describes the discovery. The group's experiment couples the radiation pressure force that is generated by light circulating inside a glass microsphere -- about the size of a human hair -- to the mechanical breathing motion of the microsphere. One can change the color of a light pulse by first exciting a mechanical vibration through the optomechanical coupling, and then using the vibration to generate a new light pulse at the desired color.

Making the conversion currently is limited by thermal mechanical motion -- only at temperatures approaching absolute zero can such an approach be useful for quantum applications. As an example of the challenge, the researchers said, consider a tuning fork:

"If you were able to look at the tuning fork very closely, you would see that it is always vibrating a little bit on its own, just from the thermal motion," said co-author Victor Fiore, a graduate student. "This causes a problem because the noise from the thermal motion can swamp out the signal that we care about."

The Oregon group solved the problem by demonstrating the "dark-mode" approach proposed earlier this year by theoretical physicists from McGill University and the University of California, Merced. By achieving the dark mode, the color-conversion process is immune to thermal noise, even though the conversion is still mediated by the same mechanical oscillator. This approach provides an alternative to cooling the mechanical oscillator to eliminate the noise.

Describing the dark mode is difficult, but co-author Mark C. Kuzyk, another graduate student in Wang's lab, suggests picturing three children sitting on swings, holding hands. "The two outermost kids are the photons (light) of different colors, and the middle child is the mechanical oscillator. When all three children are sitting still, there are no photons or vibrations in the system. If we push one of the swings, all three kids will start moving. In the dark mode approach, we push and pull on the swings in a special way that generates a very particular pattern of swinging.

"As the child on the left hand side moves forward," Kuzyk continued, "the child on the right hand side moves backward, such that the middle child never moves. This is interesting because even though the middle child never moves, she is a necessary part of the system. Without her, there would be no way to couple the two outermost swings."

For applications in a quantum Internet, the next challenge is to demonstrate that this process can work at the level of a single photon and can be implemented on a semiconductor chip, Wang said.

"This fundamental research in the Oregon Center for Optics is vitally important for the development of advanced computing systems for the future," said Kimberly Andrews Espy, UO vice president for research and innovation, and dean of the graduate school. "This work in Dr. Wang's lab is on the cutting edge of research in physics to harness new ways to harness and manipulate photons in efficient and economical ways."


Contact: Jim Barlow
University of Oregon

Related biology technology :

1. UCLA physicists report nanotechnology feat with proteins
2. UMass Amherst polymer scientists, physicists develop new way to shape thin gel sheets
3. UCSB Physicists mix 2 lasers to create light at many frequencies
4. University of Florida physicists set new record for graphene solar cell efficiency
5. CU-Boulder physicists use ultrafast lasers to create first tabletop X-ray device
6. University of Utah physicists invent spintronic LED
7. Physicists in Mainz and all around the world cheer the discovery of the Higgs particle
8. New method for enhancing thermal conductivity could cool computer chips, lasers and other devices
9. Magnetic actuation enables nanoscale thermal analysis
10. Lifeline Biotechnologies Receives Patent for Methods to Collect and Analyze Breast Thermal Data to Determine Suspect Conditions
11. Scientists target bacterial transfer of resistance genes
Post Your Comments:
Related Image:
Physicists skirt thermal vibration, transfer optical signal via mechanical oscillator
(Date:11/30/2015)... , Nov. 30, 2015 /PRNewswire/ - Zenith Epigenetics Corp. ("Zenith" ... Norman C.W. Wong to its Board of Directors ... to Zenith with a wealth of experience as co-founder of ... biology. --> --> Dr. ... Epigenetics, board of directors. Zenith,s long standing expertise in epigenetics ...
(Date:11/30/2015)... 2015  Champions Oncology, Inc. (CSBR), engaged in the ... the development and use of oncology drugs, today announced ... be presenting at the LD MICRO Investor Conference on ... (PST).  The conference, held at the Luxe Sunset Bel ... , will feature 200 small/micro-cap companies and is expected ...
(Date:11/30/2015)... Nov. 30, 2015  HUYA Bioscience International, the leader ... pharmaceutical innovations, today announced it has signed a ... (KDDF) to foster collaboration between KDDF and HUYA with ... of healthcare products for the global market. ... source of new innovative preclinical and clinical stage compounds. ...
(Date:11/30/2015)... and MAGDEBURG, Germany , November ... NeuroRehabilitation (ECNR) in Vienna, Austria ... European Congress of NeuroRehabilitation (ECNR) in Vienna, ... --> NovaVision, a wholly owned subsidiary of Vycor Medical, ... version of its Internet-delivered NovaVision Therapy Suite at the ...
Breaking Biology Technology:
(Date:11/12/2015)... CAMBRIDGE, Mass. , Nov. 12, 2015 /PRNewswire/ ... Broad Institute of MIT and Harvard for use ... chemical discovery information management tools. The partnership will ... share both biological and chemical research information internally ... tools will be used for managing the Institute,s ...
(Date:11/10/2015)... NEW YORK , Nov. 10, 2015 /PRNewswire/ ... refers to behavioral biometrics that helps to identify ... prevent fraud. Signature is considered as the secure ... for the identification of a particular individual because ... offers more accurate results especially when dynamic signature ...
(Date:11/2/2015)... , Nov. 2, 2015  SRI International has ... to provide preclinical development services to the National Cancer ... SRI will provide scientific expertise, modern testing and support ... of preclinical pharmacology and toxicology studies to evaluate potential ... --> The PREVENT Cancer Drug Development Program is ...
Breaking Biology News(10 mins):