Navigation Links
Perfecting a solar cell by adding imperfections
Date:6/16/2008

Nanotechnology is paving the way toward improved solar cells. New research shows that a film of carbon nanotubes may be able to replace two of the layers normally used in a solar cell, with improved performance at a lower cost. Researchers have found a surprising way to give the nanotubes the properties they need: add defects.

Currently, these solar cells, called dye-sensitized solar cells, have a transparent film made of an oxide that is applied to glass and conducts electricity. In addition, a separate film made of platinum acts as a catalyst to speed the chemical reactions involved.

Both of these materials have disadvantages, though. The oxide films can't easily be applied to flexible materials: they perform much better on a rigid and heat resistant substrate like glass. This increases costs and limits the kinds of products that can be made. And expensive equipment is necessary to create the platinum films.

Jessika Trancik of the Santa Fe Institute, Scott Calabrese Barton of Michigan State University and James Hone of Columbia University decided to use carbon nanotubes to create a single layer that could perform the functions of both the oxide and platinum layers. They needed it to have three properties: transparency, conductivity, and catalytic activity.

Ordinary carbon nanotubes films are so-so in each of these properties. The obvious ways of improving one, though, sacrifice one of the others. For example, making the film thicker makes it a better catalyst, but then it's less transparent.

Previous theory had suggested that materials may function better as catalysts when they have tiny defects, providing sites for chemicals to attach. So the researchers tried exposing the carbon nanotubes to ozone, which roughs them up a bit. Very thin films, they found, became dramatically better catalysts, with more than ten-fold improvement.

In fact, the performance gets close to that of platinum. "That's remarkable," Trancik says, "because platinum is considered pretty much the best catalyst there is."

In order to address the trade-off between transparency and conductivity, the researchers tried another trick on a bottom layer of tubes: they created carbon nanotubes that were longer. This improved both conductivity and transparency.

The carbon nanotube films might be used in fuel cells and batteries as well.

"This study is an example of using nanostructuring of materials changing things like defect density and tube length at very small scales to shift trade-offs between materials properties and get more performance out of a given material," Trancik says. "Making inexpensive materials behave in advanced ways is critical for achieving low-carbon emissions and low cost energy technologies."


'/>"/>

Contact: Jessika Trancik
trancik@santafe.edu
505-946-2794
Santa Fe Institute
Source:Eurekalert

Related biology technology :

1. UC San Diego nanostructures will raise thin-film solar cell efficiency
2. Nanowires may boost solar cell efficiency, UC San Diego engineers say
3. New efficiency record for solar cells
4. Special coating greatly improves solar cell performance
5. Solar cell directly splits water for hydrogen
6. Energy Conversion Devices and United Solar Ovonic Enter Into New $55 Million Secured Credit Facility Agreements
7. Solar energy technology licensed
8. New nanostructured thin film shows promise for efficient solar energy conversion
9. Solar cells of the future
10. Nanotech could make solar energy as easy and cheap as growing grass
11. China Technology Announces Entry to the Solar Energy Sector
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... 27, 2016  Liquid Biotech USA ... of a Sponsored Research Agreement with The University ... (CTCs) from cancer patients.  The funding will be ... correlate with clinical outcomes in cancer patients undergoing ... then be employed to support the design of ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... While the ... such as the Cary 5000 and the 6000i models are higher end machines that ... the height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... and Mold) microbial test has received AOAC Research Institute approval 061601. , “This ... introduced last year,” stated Bob Salter, Vice President of Regulatory and Industrial Affairs. ...
Breaking Biology Technology:
(Date:4/14/2016)... 14, 2016 BioCatch ™, ... today announced the appointment of Eyal Goldwerger ... Goldwerger,s leadership appointment comes at a time ... the deployment of its platform at several of the ... which discerns unique cognitive and physiological factors, is a ...
(Date:3/31/2016)... 2016  Genomics firm Nabsys has completed a financial ... Bready , M.D., who returned to the company in ... leadership team, including Chief Technology Officer, John Oliver ... Nurnberg and Vice President of Software and Informatics, ... Dr. Bready served as CEO of Nabsys from ...
(Date:3/22/2016)... 2016 According to ... for Consumer Industry by Type (Image, Motion, Pressure, ... & IT, Entertainment, Home Appliances, & Wearable ... 2022", published by MarketsandMarkets, the market for ... USD 26.76 Billion by 2022, at a ...
Breaking Biology News(10 mins):