Navigation Links
Perfect nanotubes shine brightest
Date:1/31/2012

A painstaking study by Rice University has brought a wealth of new information about single-walled carbon nanotubes through analysis of their fluorescence.

The current issue of the American Chemical Society journal ACS Nano features an article about work by the Rice lab of chemist Bruce Weisman to understand how the lengths and imperfections of individual nanotubes affect their fluorescence in this case, the light they emit at near-infrared wavelengths.

The researchers found that the brightest nanotubes of the same length show consistent fluorescence intensity, and the longer the tube, the brighter. "There's a rather well-defined limit to how bright they appear," Weisman said. "And that maximum brightness is proportional to length, which suggests those tubes are not affected by imperfections."

But they found that brightness among nanotubes of the same length varied widely, likely due to damaged or defective structures or chemical reactions that allowed atoms to latch onto the surface.

The study first reported late last year by Weisman, lead author/former graduate student Tonya Leeuw Cherukuri and postdoctoral fellow Dmitri Tsyboulski detailed the method by which Cherukuri analyzed the characteristics of 400 individual nanotubes of a specific physical structure known as (10,2).

"It's a tribute to Tonya's dedication and talent that she was able to make this large number of accurate measurements," Weisman said of his former student.

The researchers applied spectral filtering to selectively view the specific type of nanotube. "We used spectroscopy to take this very polydisperse sample containing many different structures and study just one of them, the (10,2) nanotubes," Weisman said. "But even within that one type, there's a wide range of lengths."

Weisman said the study involved singling out one or two isolated nanotubes at a time in a dilute sample and finding their lengths by analyzing videos of the moving tubes captured with a special fluorescence microscope. The movies also allowed Cherukuri to catalog their maximum brightness.

"I think of these tubes as fluorescence underachievers," he said. "There are a few bright ones that fluoresce to their full potential, but most of them are just slackers, and they're half as bright, or 20 percent as bright, as they should be.

"What we want to do is change that distribution and leave no tube behind, try to get them all to the top. We want to know how their fluorescence is affected by growth methods and processing, to see if we're inflicting damage that's causing the dimming.

"These are insights you really can't get from measurements on bulk samples," he said.

Graduate student Jason Streit is extending Cherukuri's research. "He's worked up a way to automate the experiments so we can image and analyze dozens of nanotubes at once, rather than one or two. That will let us do in a couple of weeks what had taken months with the original method," Weisman said.


'/>"/>
Contact: David Ruth
david@rice.edu
713-348-6327
Rice University
Source:Eurekalert

Related biology technology :

1. Solar power game-changer: Near perfect absorption of sunlight, from all angles
2. Nikon Instruments Perfect Focus System Wins Second Place in The Scientists Top Innovations of 2008 Award
3. Practice makes perfect -- motor memory possible for neuroprosthetic control
4. Ohio Executive Shares Why Ohio is the Perfect Location for Bioscience Business in National Ad Campaign
5. £4.9 million to develop metamaterials for invisibility cloaks and perfect lenses
6. The perfect nanocube: Precise control of size, shape and composition
7. Scientists perfect new nanowire technique
8. Cats show perfect balance even in their lapping
9. Pixel perfect: Cornell develops a lens-free, pinhead-size camera
10. Imperfections may improve graphene sensors
11. Imperfections may improve graphene sensors
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/26/2017)... ... May 25, 2017 , ... LabRoots , the leading provider of scientific ... the world, is announcing a new textbook scholarship, the second scholarship in the LabRoots ... 17 years or older, pursuing a degree in one of the life sciences. The ...
(Date:5/24/2017)... BELLINGHAM, Washington, and WASHINGTON, DC, USA (PRWEB) , ... May 23, ... ... powerful driver of the economy as well as an enabler of life-saving medical and ... society for optics and photonics . They joined others in the scientific community today ...
(Date:5/23/2017)... (PRWEB) , ... May 23, 2017 , ... A recent ... the most troublesome and difficult to control weed in 12 categories of broadleaf crops, ... Almost 200 weed scientists across the U.S. and Canada participated in the 2016 survey, ...
(Date:5/23/2017)... ... May 22, 2017 , ... A new Technology ... Diego, California, this August will feature high-level speakers on quantum devices, graphene electronic ... Optics and Photonics, the largest multidisciplinary optical sciences meeting in North America, will ...
Breaking Biology Technology:
(Date:3/30/2017)... 30, 2017  On April 6-7, 2017, Sequencing.com will ... hackathon at Microsoft,s headquarters in ... focus on developing health and wellness apps that provide ... the Genome is the first hackathon for personal ... largest companies in the genomics, tech and health industries ...
(Date:3/27/2017)... N.Y. , March 27, 2017  Catholic ... Information and Management Systems Society (HIMSS) Analytics for ... EMR Adoption Model sm . In addition, CHS ... of U.S. hospitals using an electronic medical record ... for its high level of EMR usage in ...
(Date:3/22/2017)... 2017   Neurotechnology , a provider of ... announced the release of the SentiVeillance 6.0 ... facial recognition using up to 10 surveillance, security ... The new version uses deep neural-network-based facial detection ... utilizes a Graphing Processing Unit (GPU) for enhanced ...
Breaking Biology News(10 mins):